【題目】一個(gè)盒子里有3個(gè)相同的小球,將3個(gè)小球分別標(biāo)示號(hào)碼1、2、3,每次從盒子里隨機(jī)取出1個(gè)小球且取后放回,預(yù)計(jì)取球10次.若規(guī)定每次取球時(shí),取出的號(hào)碼即為得分,則前八次的取球得分情況如下表所示
次數(shù) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
得分 | 2 | 1 | 1 | 2 | 2 | 3 | 2 | 3 |
(1)設(shè)第1次至第8次取球得分的平均數(shù)為
,求
的值:
(2)求事件“第9次和第10次取球得分的平均數(shù)等于
”發(fā)生的概率;(列表法或樹狀圖)
【答案】(1)2;(2)列表見解析,![]()
【解析】
(1)根據(jù)平均數(shù)的計(jì)算方法進(jìn)行計(jì)算即可;
(2)用列表法列舉出所有等可能出現(xiàn)的情況,從中找出符合條件的情況數(shù),進(jìn)而求出概率.
(1)
=(2+1+1+2+2+3+2+3)÷8=2;
(2)用表格列出所有可能出現(xiàn)的情況如下:
![]()
若“第9次和第10次取球得分的平均數(shù)等于
”也就是兩次抽出的數(shù)的和為4,
共有9種情況,其中和為4的有3種,
∴P(兩次發(fā)的和為4)=
=
,
答:事件“第9次和第10次取球得分的平均數(shù)等于
”發(fā)生的概率為
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,CD是弦,且CD⊥AB于點(diǎn)P,若AB=4,OP=1,則弦CD所對(duì)的圓周角等于_____度.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AD平分∠CAB交BC于D點(diǎn),O是AB上一點(diǎn),經(jīng)過A、D兩點(diǎn)的⊙O分別交AB、AC于點(diǎn)E、F.
![]()
(1)用尺規(guī)補(bǔ)全圖形(保留作圖痕跡,不寫作法);
(2)求證:BC與⊙O相切;
(3)當(dāng)AD=2
,∠CAD=30°時(shí),求劣弧AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=﹣x2+bx+c的圖象與x軸交于A、B兩點(diǎn),A點(diǎn)的坐標(biāo)為(﹣3,0),B點(diǎn)在原點(diǎn)的左側(cè),與y軸交于點(diǎn)C(0,3),點(diǎn)P是直線BC上方的拋物線上一動(dòng)點(diǎn)
(1)求這個(gè)二次函數(shù)的表達(dá)式;
(2)連接PO、PC,并把△POC沿CO翻折,得到四邊形POP′C(如圖1所示),那么是否存在點(diǎn)P,使四邊形POP′C為菱形?若存在,請(qǐng)此時(shí)點(diǎn)P的坐標(biāo):若不存在,請(qǐng)說明理由;
(3)當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),四邊形ABCP的面積最大,并求出其最大值.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:
內(nèi)接于⊙
,連接
并延長交
于點(diǎn)
,交⊙
于點(diǎn)
,滿足
.
(1)如圖1,求證:
;
(2)如圖2,連接
,點(diǎn)
為弧
上一點(diǎn),連接
,
=
,過點(diǎn)
作
,垂足為點(diǎn)
,求證:
;
(3)如圖3,在(2)的條件下,點(diǎn)
為
上一點(diǎn),分別連接
,
,過點(diǎn)
作
,交⊙
于點(diǎn)
,
,
,連接
,求
的長.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線
與軸交于
兩點(diǎn),與
軸交于點(diǎn)
,設(shè)拋物線的頂點(diǎn)為點(diǎn)
.
(1)求該拋物線的解析式與頂點(diǎn)
的坐標(biāo).
(2)試判斷
的形狀,并說明理由.
(3)坐標(biāo)軸上是否存在點(diǎn)
,使得以
為頂點(diǎn)的三角形與
相似?若存在,請(qǐng)直接寫出點(diǎn)
的坐標(biāo);若不存在,請(qǐng)說明理由.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】材料1:在設(shè)計(jì)人體雕塑時(shí),存在一個(gè)分隔點(diǎn),使雕塑的上部(腰以上)與下部(腰以下)之比,等于下部與全部(全身)之比,可以增加視覺美觀,數(shù)學(xué)上把這個(gè)點(diǎn)叫“黃金分割點(diǎn)”. 為了研究這個(gè)點(diǎn),我們?cè)诰段AB上取點(diǎn)C(如圖1),點(diǎn)C把AB分成AC和CB兩段,其中BC是較小的一段,現(xiàn)要使
即可.為了簡便起見,設(shè)AB=1,AC=x,則CB=1-x,代入
,即
,也即x2+x-1=0,解之得,
.所以
=
,人們把
這個(gè)數(shù)叫黃金分割數(shù),點(diǎn)C叫“黃金分割點(diǎn)”.
材料2:由線段的黃金分割點(diǎn)聯(lián)想到圖形的“黃金分割線”,類似地給出“黃金分割線”的定義:直線l將一個(gè)面積為S的圖形分成面積為S1和面積為S2的兩部分(設(shè)S1<S2),如果
,那么稱直線l為該圖形的“黃金分割線”.
(1)如圖2,點(diǎn)C是線段AB的黃金分割點(diǎn)(AC>CB),取線段AB的中點(diǎn)O,作點(diǎn)C關(guān)于點(diǎn)O的對(duì)稱點(diǎn)
,則
;繼續(xù)取線段AC的中點(diǎn)
,作點(diǎn)
關(guān)于點(diǎn)
的對(duì)稱點(diǎn)
,試猜想點(diǎn)
是否線段A
的黃金分割點(diǎn),若是,請(qǐng)證明,若不是,請(qǐng)說明理由;
(2)如圖3,在平面直角坐標(biāo)系中, A(-
,0),B(1,0),C(4-
,2),求△ABC中經(jīng)過點(diǎn)C的“黃金分割線”解析式.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+4經(jīng)過A(﹣3,0)、B(4,0)兩點(diǎn),且與y軸交于點(diǎn)C,D(4﹣4
,0).動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿線段AB以每秒1個(gè)單位長度的速度向點(diǎn)B移動(dòng),同時(shí)動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),沿線段CA以某一速度向點(diǎn)A移動(dòng).
![]()
(1)求該拋物線的解析式;
(2)若經(jīng)過t秒的移動(dòng),線段PQ被CD垂直平分,求此時(shí)t的值;
(3)在第一象限的拋物線上取一點(diǎn)G,使得S△GCB=S△GCA,再在拋物線上找點(diǎn)E(不與點(diǎn)A、B、C重合),使得∠GBE=45°,求E點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在△ABC中,∠A=60°,∠C=90°,將△ABC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)150°,得到△DBE.請(qǐng)僅用無刻度的直尺,按要求畫圖(保留畫圖痕跡,在圖中標(biāo)出字母,并在圖下方表示出所畫圖形).
(1)在圖①中,畫一個(gè)等邊三角形;
(2)在圖②中,畫一個(gè)等腰直角三角形.
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com