【題目】將函數y=f(x)的圖象向左平移φ(0<φ<π)個單位后得到函數g(x)=sin2x的圖象,當x1 , x2滿足時,|f(x1)﹣g(x2)|=2,
,則φ的值為( )
A.![]()
B.![]()
C.![]()
D.![]()
【答案】D
【解析】解:將函數y=f(x)的圖象向左平移φ(0<φ<π)個單位后得到函數g(x)=sin2x的圖象,故f(x)=sin(2x﹣2φ), 當x1 , x2滿足時|f(x1)﹣g(x2)|=2 時,
,
由題意可得:有|x1﹣x2|min=
﹣φ=
,
結合范圍0<φ<
,解得:φ=
,
故選:D.
【考點精析】通過靈活運用函數y=Asin(ωx+φ)的圖象變換,掌握圖象上所有點向左(右)平移
個單位長度,得到函數
的圖象;再將函數
的圖象上所有點的橫坐標伸長(縮短)到原來的
倍(縱坐標不變),得到函數
的圖象;再將函數
的圖象上所有點的縱坐標伸長(縮短)到原來的
倍(橫坐標不變),得到函數
的圖象即可以解答此題.
科目:初中數學 來源: 題型:
【題目】自2016年國慶后,許多高校均投放了使用手機就可隨用的共享單車.某運營商為提高其經營的A品牌共享單車的市場占有率,準備對收費作如下調整:一天中,同一個人第一次使用的車費按0.5元收取,每增加一次,當次車費就比上次車費減少0.1元,第6次開始,當次用車免費.具體收費標準如下:
使用次數 | 0 | 1 | 2 | 3 | 4 | 5(含5次以上) |
累計車費 | 0 | 0.5 | 0.9 | a | b | 1.5 |
同時,就此收費方案隨機調查了某高校100名師生在一天中使用A品牌共享單車的意愿,得到如下數據:
使用次數 | 0 | 1 | 2 | 3 | 4 | 5 |
人數 | 5 | 15 | 10 | 30 | 25 | 15 |
(Ⅰ)寫出a,b的值;
(Ⅱ)已知該校有5000名師生,且A品牌共享單車投放該校一天的費用為5800元.試估計:收費調整后,此運營商在該校投放A品牌共享單車能否獲利?說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在“一帶一路”倡議下,我國已成為設施聯通,貿易暢通的促進者,同時也帶動了我國與沿線國家的貨物交換的增速發展,如圖是湘成物流園2016年通過“海、陸(汽車)、空、鐵”四種模式運輸貨物的統計圖. 請根據統計圖解決下面的問題:![]()
(1)該物流園2016年貨運總量是多少萬噸?
(2)該物流園2016年空運貨物的總量是多少萬噸?并補全條形統計圖;
(3)求條形統計圖中陸運貨物量對應的扇形圓心角的度數
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某網店嘗試用單價隨天數而變化的銷售模式銷售一種商品,利用30天的時間銷售一種成本為10元/件的商品售后,經過統計得到此商品單價在第x天(x為正整數)銷售的相關信息,如表所示:
銷售量n(件) | n=50﹣x |
銷售單價m(元/件) | 當1≤x≤20時, |
當21≤x≤30時, |
(1)請計算第15天該商品單價為多少元/件?
(2)求網店銷售該商品30天里所獲利潤y(元)關于x(天)的函數關系式;
(3)這30天中第幾天獲得的利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某銷售公司為了解員工的月工資水平,從1000位員工中隨機抽取100位員工進行調查,得到如下的頻率分布直方圖: ![]()
(1)試由此圖估計該公司員工的月平均工資;
(2)該公司工資發放是以員工的營銷水平為重要依據來確定的,一般認為,工資低于4500元的員工屬于學徒階段,沒有營銷經驗,若進行營銷將會失;高于4500元的員工是具備營銷成熟員工,進行營銷將會成功.現將該樣本按照“學徒階段工資”、“成熟員工工資”分為兩層,進行分層抽樣,從中抽出5人,在這5人中任選2人進行營銷活動.活動中,每位員工若營銷成功,將為公司贏得3萬元,否則公司將損失1萬元,試問在此次比賽中公司收入多少萬元的可能性最大?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,矩形ABCD中,AB=2AD,E為邊AB的中點,將△ADE沿直線DE翻轉成△A1DE(A1平面ABCD),若M、O分別為線段A1C、DE的中點,則在△ADE翻轉過程中,下列說法錯誤的是( ) ![]()
A.與平面A1DE垂直的直線必與直線BM垂直
B.異面直線BM與A1E所成角是定值
C.一定存在某個位置,使DE⊥MO
D.三棱錐A1﹣ADE外接球半徑與棱AD的長之比為定值
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】點P是曲線C1:(x﹣2)2+y2=4上的動點,以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,以極點O為中心,將點P逆時針旋轉90°得到點Q,設點Q的軌跡方程為曲線C2 .
(1)求曲線C1 , C2的極坐標方程;
(2)射線θ=
與曲線C1 , C2分別交于A,B兩點,定點M(2,0),求△MAB的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知圓C:(x﹣1)2+y2=
,一動圓與直線x=﹣
相切且與圓C外切. (Ⅰ)求動圓圓心P的軌跡T的方程;
(Ⅱ)若經過定點Q(6,0)的直線l與曲線T相交于A、B兩點,M是線段AB的中點,過M作x軸的平行線與曲線T相交于點N,試問是否存在直線l,使得NA⊥NB,若存在,求出直線l的方程,若不存在,說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com