【題目】某實驗中學為了進一步豐富學生的課余生活,擬調整興趣活動小組,為此進行了一次調查,結果如下,請看表回答:
選項 | 美術 | 電腦 | 音樂 | 體育 |
占調查人數的百分率 | 15% | 30% | 30% |
(1)喜歡體育項目的人數占總體的百分比是多少?
(2)表示“電腦”部分的圓心角是多少度?
(3)根據所給數據,畫出表示調查結果的扇形統計圖.
科目:初中數學 來源: 題型:
【題目】如圖,直線y1=kx+2與x軸交于點A(m,0)(m>4),與y軸交于點B,拋物線y2=ax2﹣4ax+c(a<0)經過A,B兩點.P為線段AB上一點,過點P作PQ∥y軸交拋物線于點Q.
(1)當m=5時,
①求拋物線的關系式;
②設點P的橫坐標為x,用含x的代數式表示PQ的長,并求當x為何值時,PQ=
;
(2)若PQ長的最大值為16,試討論關于x的一元二次方程ax2﹣4ax﹣kx=h的解的個數與h的取值范圍的關系.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】若A=10a2+3b2﹣5a+5,B=a2+3b2﹣8a+5,則A﹣B的值與﹣9a3b2的公因式為( )
A.a
B.﹣3
C.9a3b2
D.3a
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知拋物線y=ax2+bx+2經過A(﹣1,0),B(2,0),C三點.直線y=mx+0.5交拋物線于A,Q兩點,點P是拋物線上直線AQ上方的一個動點,作PF⊥x軸,垂足為F,交AQ于點N.
(1)求拋物線的解析式;
(2)如圖①,當點P運動到什么位置時,線段PN=2NF,求出此時點P的坐標;
(3)如圖②,線段AC的垂直平分線交x軸于點E,垂足為D,點M為拋物線的頂點,在直線DE上是否存在一點G,使△CMG的周長最小?若存在,請求出點G的坐標;若不存在,請說明理由.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在ABCD中,AD=8,AE平分∠BAD交BC于點E,DF平分∠ADC交BC于點F,且EF=2,則AB的長為( )
A.3
B.5
C.2或3
D.3或5
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校在踐行“社會主義核心價值觀”演講比賽中,對名列前20名的選手的綜合分數m進行分組統計,結果如表所示:
![]()
組號 | 分組 | 頻數 |
一 | 6≤m<7 | 2 |
二 | 7≤m<8 | 7 |
三 | 8≤m<9 | a |
四 | 9≤m≤10 | 2 |
(1)求a的值.
(2)若用扇形統計圖來描述,求分數在8≤m<9內所對應的扇形的圓心角的度數.
(3)將在第一組內的兩名選手記為A1,A2,在第四組內的兩名選手記為B1,B2, 從第一組和第四組中隨機選取2名選手進行調研座談,求第一組至少有1名選手被選中的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com