【題目】已知:如圖1,在
中,
,∠ABC=30°,
,點(diǎn)
、E分別是邊
、AC上動點(diǎn),點(diǎn)
不與點(diǎn)
、
重合,DE∥BC.
(1)如圖1,當(dāng)AE=1時,求
長;
(2)如圖2,把沿著直線
翻折得到
,設(shè)![]()
①當(dāng)點(diǎn)F落在斜邊
上時,求
的值;
② 如圖3,當(dāng)點(diǎn)F落在
外部時,EF、DF分別與
相交于點(diǎn)H、G,如果△ABC和△DEF重疊部分的面積為
,求
與
的函數(shù)關(guān)系式及定義域.(直接寫出答案)
![]()
【答案】(1)BD=
;(2)①x=2;②
.
【解析】
(1)根據(jù)DE∥BC,可得∠ADE=30°,然后分別利用三角函數(shù)求出AB和AD即可;
(2)①設(shè)
,則AE=EF=4-x,然后證明△CEF是等邊三角形即可解決問題;
②由①可知CE=x,AE=EF=4-x,△CEF是等邊三角形,然后分別求出HF、FG和AD,利用三角形面積公式計(jì)算出
和
,進(jìn)而得到
,然后根據(jù)
列式整理,并求出定義域即可.
解:(1)∵
,∠ABC=30°,
,AE=1,
∴
,
∵DE∥BC,
∴∠ADE=30°,
∴
,
∴BD=AB-AD=
;
(2)①設(shè)
,則AE=4-x,
∴EF=4-x,
∵∠ADE=∠B =30°,
∴∠AED=∠C =60°,
∴∠CEF=180°-60°-60°=60°,
∴△CEF是等邊三角形,
∴CE=EF,即x=4-x,
∴x=2;
②由①可知CE=x,AE=EF=4-x,△CEF是等邊三角形,
∴HF=EF-EH=4-x-x=4-2x,∠FHG=∠CHE=60°,
∵∠F=∠A=90°,
∴FG=
HF=
,
∴
,
∵AE= 4-x,∠ADE=30°,
∴
,
∴
,
∴
,
∴
,
∵當(dāng)x=2時,點(diǎn)F落在斜邊
上,
∴定義域?yàn)椋?/span>
,
即
.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是半徑為2的⊙O的弦,將
沿著弦AB折疊,正好經(jīng)過圓心O,點(diǎn)C是折疊后的
上一動點(diǎn),連接并延長BC交⊙O于點(diǎn)D,點(diǎn)E是CD的中點(diǎn),連接AC,AD,EO.則下列結(jié)論:①∠ACB=120°,②△ACD是等邊三角形,③EO的最小值為1,其中正確的是_____.(請將正確答案的序號填在橫線上)
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,
是
的內(nèi)接正十邊形的一邊,
平分
交
于點(diǎn)
,則下列結(jié)論正確的有( )
①
;②
;③
;④
.
![]()
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在△ABC中,∠B=60°,點(diǎn)M從點(diǎn)B出發(fā)沿射線BC方向,在射線BC上運(yùn)動.在點(diǎn)M運(yùn)動的過程中,連結(jié)AM,并以AM為邊在射線BC上方,作等邊△AMN,連結(jié)CN.
![]()
(1)當(dāng)∠BAM= °時,AB=2BM;
(2)請?zhí)砑右粋條件: ,使得△ABC為等邊三角形;
①如圖1,當(dāng)△ABC為等邊三角形時,求證:CN+CM=AC;
②如圖2,當(dāng)點(diǎn)M運(yùn)動到線段BC之外(即點(diǎn)M在線段BC的延長線上時),其它條件不變(△ABC仍為等邊三角形),請寫出此時線段CN、CM、AC滿足的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分9分)如圖,點(diǎn)O為Rt△ABC斜邊AB上的一點(diǎn),以OA為半徑的⊙O與BC切于點(diǎn)D,與AC交于點(diǎn)E,連接AD.
![]()
(1)求證:AD平分∠BAC;
(2)若∠BAC = 60°,OA = 2,求陰影部分的面積(結(jié)果保留
).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知以AE為直徑的半圓圓心為O,半徑為5,矩形ABCD的頂點(diǎn)B在直徑AE上,頂點(diǎn)C 在半圓上,AB=8,點(diǎn)P為半圓上一點(diǎn)(不與A、E兩點(diǎn)重合).
(1)矩形ABCD的邊BC的長為多少;
(2)將矩形沿直線AP折疊,點(diǎn)B落在點(diǎn)B′.
①點(diǎn)B′到直線AE的最大距離是多少;
②當(dāng)點(diǎn)P與點(diǎn)C重合時,如圖2所示,AB′交DC于點(diǎn)M.
求證:四邊形AOCM是菱形,并通過證明判斷CB′與半圓的位置關(guān)系;
③當(dāng)EB′∥BD時,直接寫出EB′的長為多少.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=-x2+bx+c與x軸相交于A(-1,0),B(5,0)兩點(diǎn).
(1)求拋物線的解析式;
(2)在第二象限內(nèi)取一點(diǎn)C,作CD垂直x軸于點(diǎn)D,鏈接AC,且AD=5,CD=8,將Rt△ACD沿x軸向右平移m個單位,當(dāng)點(diǎn)C落在拋物線上時,求m的值;
(3)在(2)的條件下,當(dāng)點(diǎn)C第一次落在拋物線上記為點(diǎn)E,點(diǎn)P是拋物線對稱軸上一點(diǎn).試探究:在拋物線上是否存在點(diǎn)Q,使以點(diǎn)B、E、P、Q為頂點(diǎn)的四邊形是平行四邊形?若存在,請出點(diǎn)Q的坐標(biāo);若不存在,請說明理由.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】車間有20名工人,某一天他們生產(chǎn)的零件個數(shù)統(tǒng)計(jì)如下表:
生產(chǎn)零件的個數(shù)(個) | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |
工人人數(shù)(人) | 1 | 1 | 6 | 4 | 2 | 2 | 2 | 1 | 1 |
(1)求這一天20名工人生產(chǎn)零件的平均個數(shù);
(2)為了提高大多數(shù)工人的積極性,管理者準(zhǔn)備實(shí)行“每天定額生產(chǎn),超產(chǎn)有獎”的措施.如果你是管理者,從平均數(shù)、中位數(shù)、眾數(shù)的角度進(jìn)行分析,你將如何確定這個“定額”?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】全民健身運(yùn)動已成為一種時尚,為了了解我市居民健身運(yùn)動的情況,某健身館的工作人員開展了一項(xiàng)問卷調(diào)查,問卷包括五個項(xiàng)目:A:健身房運(yùn)動;B:跳廣場舞;C:參加暴走團(tuán);D:散布;E:不運(yùn)動.
以下是根據(jù)調(diào)查結(jié)果繪制的統(tǒng)計(jì)圖表的一部分.
運(yùn)動形式 | A | B | C | D | E |
人數(shù) | 12 | 30 | m | 54 | 9 |
請你根據(jù)以上信息,回答下列問題:
(1)接受問卷調(diào)查的共有 人,圖表中的m= ,n= ;
(2)統(tǒng)計(jì)圖中,A類所對應(yīng)的扇形圓心角的度數(shù)為 ;
(3)根據(jù)調(diào)查結(jié)果,我市市民最喜愛的運(yùn)動方式是 ,不運(yùn)動的市民所占的百分比是 ;
(4)我市碧沙崗公園是附近市民喜愛的運(yùn)動場所之一,每晚都有“暴走團(tuán)”活動,若最鄰近的某社區(qū)約有1500人,那么估計(jì)一下該社區(qū)參加碧沙崗“暴走團(tuán)”的大約有多少人?
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com