【題目】如圖,P為△ABC內(nèi)的一點(diǎn),D,E,F分別是點(diǎn)P關(guān)于邊AB,BC,CA所在直線的對稱點(diǎn),那么∠ADB+∠BEC+∠CFA=______°.
![]()
【答案】360
【解析】
連接PA、PB、PC,根據(jù)軸對稱的性質(zhì)可得∠DAB=∠PAB,∠FAC=∠PAC,從而求出∠DAF=2∠BAC,同理可求∠DBE=2∠ABC,∠ECF=2∠ACB,再根據(jù)六邊形的內(nèi)角和定理列式計算即可得解.
解:如圖,連接PA、PB、PC,
![]()
∵D、F分別是點(diǎn)P關(guān)于邊AB、CA所在直線的對稱點(diǎn),
∴∠DAB=∠PAB,∠FAC=∠PAC,
∴∠DAF=2∠BAC,
同理可求∠DBE=2∠ABC,∠ECF=2∠ACB,
∵∠BAC+∠ABC+∠ACB=180°,
∴∠DAF+∠DBE+∠ECF=180°×2=360°,
∴∠ADB+∠BEC+∠CFA=(6-2)180°-(∠DAF+∠DBE+∠ECF)=720°-360°=360°.
故答案為:360.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線
與
軸交于點(diǎn)
,對稱軸為
.
試用含
的代數(shù)式表示
、
.
當(dāng)拋物線與直線
交于點(diǎn)
時,求此拋物線的解析式.
求當(dāng)
取得最大值時的拋物線的頂點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,
中,
,現(xiàn)有兩點(diǎn)M、N分別從點(diǎn)A、點(diǎn)B同時出發(fā),沿三角形的邊運(yùn)動,已知點(diǎn)M的速度為每秒1個單位長度,點(diǎn)N的運(yùn)度為每秒2個單位長度
當(dāng)點(diǎn)M第一次到達(dá)B點(diǎn)時,M、N同時停止運(yùn)動.
點(diǎn)M、N運(yùn)動幾秒后,M、N兩點(diǎn)重合?
點(diǎn)M、N運(yùn)動幾秒后,可得到等邊三角形
?
當(dāng)點(diǎn)M、N在BC邊上運(yùn)動時,能否得到以MN為底邊的等腰
?如存在,請求出此時M、N運(yùn)動的時間.![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖顯示了用計算機(jī)模擬隨機(jī)投擲一枚圖釘?shù)哪炒螌?shí)驗(yàn)的結(jié)果.
![]()
下面有三個推斷:
①當(dāng)投擲次數(shù)是500時,計算機(jī)記錄“釘尖向上”的次數(shù)是308,所以“釘尖向上”的概率是0.616;
②隨著實(shí)驗(yàn)次數(shù)的增加,“釘尖向上”的頻率總在0.618附近擺動,顯示出一定的穩(wěn)定性,可以估計“釘尖向上”的概率是0.618;
③若再次用計算機(jī)模擬實(shí)驗(yàn),則當(dāng)投擲次數(shù)為1000時,“釘尖向上”的概率一定是0.620.
其中合理的是( )
A. ① B. ② C. ①② D. ①③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市長途客運(yùn)站每天6:30—7:30開往某縣的三輛班車票價相同,但車的舒適程度不同.小張和小王因事需在這一時段乘車去該縣,但不知道三輛車開來的順序,兩人采用不同的乘車方案:小張無論如何決定乘坐開來的第一輛車,而小王則是先觀察后上車,當(dāng)?shù)谝惠v車開來時,他不上車,而是仔細(xì)觀察車的舒適狀況.若第二輛車的狀況比第一輛車好,他就上第二輛車;若第二輛車不如第一輛車,他就上第三輛車.若按這三輛車的舒適程度分為優(yōu)、中、差三等,請你思考并回答下列問題:
(1)三輛車按出現(xiàn)的先后順序共有哪幾種可能?
(2)請列表分析哪種方案乘坐優(yōu)等車的可能性大?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=AC,∠BAC=100°,點(diǎn)D在BC邊上,△ABD和△AFD關(guān)于直線AD對稱,∠FAC的平分線交BC于點(diǎn)G,連接FG.
(1)求∠DFG的度數(shù).
(2)設(shè)∠BAD=θ,當(dāng)θ為何值時,△DFG為等腰三角形.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場銷售一種商品,進(jìn)價為每個20元,規(guī)定每個商品售價不低于進(jìn)價,且不高于60元.經(jīng)調(diào)查發(fā) 現(xiàn),每天的銷售量y(個)與每個商品的售價x(元)滿足一次函數(shù)關(guān)系,其部分?jǐn)?shù)據(jù)如下表所示:
![]()
(1)求y與x之間的函數(shù)關(guān)系式;
(2)設(shè)商場每天獲得的總利潤為w(元),求w與x之間的函數(shù)關(guān)系式;
(3)不考慮其他因素,當(dāng)商品的售價為多少元時,商場每天獲得的總利潤最大,最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在網(wǎng)格中有一個四邊形圖案.
(1)請你分別畫出△ABC繞點(diǎn)O順時針旋轉(zhuǎn)90°的圖形,關(guān)于點(diǎn)O對稱的圖形以及逆時針旋轉(zhuǎn)90°的圖形,并將它們涂黑;
(2)若網(wǎng)格中每個小正方形的邊長為1,旋轉(zhuǎn)后點(diǎn)A的對應(yīng)點(diǎn)依次為A1,A2,A3,求四邊形AA1A2A3的面積;
(3)這個美麗圖案能夠說明一個著名結(jié)論的正確性,請寫出這個結(jié)論.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD是BC邊上的中線,點(diǎn)E是AD的中點(diǎn),過點(diǎn)A作AF∥BC交BE的延長線于F,連接CF.
(1)求證:△AEF≌△DEB;
(2)若∠BAC=90°,求證:四邊形ADCF是菱形.
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com