【題目】下面是小東設(shè)計的“作
中
邊上的高線”的尺規(guī)作圖過程.
已知:
.
求作:
中
邊上的高線
.
作法:如圖,
![]()
①以點
為圓心,
的長為半徑作弧,以點
為圓心,
的長為半徑作弧,兩弧在
下方交于點
;
②連接
交
于點
.
所以線段
是
中
邊上的高線.
根據(jù)小東設(shè)計的尺規(guī)作圖過程,
(1)使用直尺和圓規(guī),補全圖形;(保留作圖痕跡)
(2)完成下面的證明.
證明:∵
,
,
∴點
,
分別在線段
的垂直平分線上( )(填推理的依據(jù)).
∴
垂直平分線段
.
∴線段
是
中
邊上的高線.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將邊長分別為6,2
的矩形硬紙片ABCD折疊,使AB,CB均落在對角線BD上,點A與點H重合,點C與點G重合,折痕分別為BE,BF.下面三個結(jié)論:①∠EBF=45°;②FG是BD的垂直平分線;③DF=5.其中正確的結(jié)論是(只填序號)![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,菱形ABCD中,過AD的中點E作AC的垂線EF,交AB于點M,交CB的延長線于點F.如果FB的長是
,∠AEM=30°.求菱形ABCD的周長和面積.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,A(0,4),C(2,0).![]()
(1)畫出線段AC關(guān)于y軸的對稱線段AB;
(2)將線段CA繞點C順時針旋轉(zhuǎn)一個角,得到對應(yīng)的線段CD,使得AD∥x軸,請畫出線段CD;
(3)若直線y=kx平分四邊形ABCD的面積,請求出k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A,B為定點,定直線l//AB,P是l上一動點.點M,N分別為PA,PB的中點,對于下列各值:
①線段MN的長;
②△PAB的周長;
③△PMN的面積;
④直線MN,AB之間的距離;
⑤∠APB的大小.
其中會隨點P的移動而變化的是( )
![]()
A. ②③ B. ②⑤ C. ①③④ D. ④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中xOy中,已知點A(0,1),以O(shè)A為邊在右側(cè)作等邊三角形OAA1 , 再過點A1作x軸的垂線,垂足為點O1 , 以O(shè)1A1為邊在右側(cè)作等邊三角形O1A1A2;…按此規(guī)律繼續(xù)作下去,得到等邊三角形O2016A2016A2017 , 則點A2017的縱坐標(biāo)為( )![]()
A.(
)2017
B.(
)2016
C.(
)2015
D.(
)2014
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=2x+3與y軸交于A點,與反比例函數(shù)y=
(x>0)的圖象交于點B,過點B作BC⊥x軸于點C,且C點的坐標(biāo)為(1,0).![]()
(1)求反比例函數(shù)的解析式;
(2)點D(a,1)是反比例函數(shù)y=
(x>0)圖象上的點,在x軸上是否存在點P,使得PB+PD最小?若存在,求出點P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,AB=BC=
,將△ABC繞點C逆時針旋轉(zhuǎn)60°,得到△MNC,連接BM,則BM的長是__.
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com