【題目】如圖,拋物線y=﹣x2+bx+c與x軸交于A(1,0),B(﹣4,0)兩點(diǎn),![]()
(1)求該拋物線的解析式;
(2)設(shè)(1)中的拋物線交y軸于C點(diǎn),在該拋物線的對稱軸上是否存在點(diǎn)Q,使得△QAC的周長最小?若存在,求出Q點(diǎn)的坐標(biāo);若不存在,請說明理由;
(3)設(shè)此拋物線與直線y=﹣x在第二象限交于點(diǎn)D,平行于y軸的直線
與拋物線交于點(diǎn)M,與直線y=﹣x交于點(diǎn)N,連接BM、CM、NC、NB,是否存在m的值,使四邊形BNCM的面積S最大?若存在,請求出m的值,若不存在,請說明理由.
【答案】
(1)
解:∵拋物線y=﹣x2+bx+c與x軸交于A(1,0),B(﹣4,0)兩點(diǎn),
將A、B兩點(diǎn)坐標(biāo)代入拋物線方程,得到: ![]()
解得: ![]()
所以,該拋物線的解析式為:y=﹣x2﹣3x+4
(2)
解:存在.
∵由前面的計(jì)算可以得到,C(0,4),且拋物線的對稱軸為直線x=﹣1.5,
∴由拋物線的對稱性,點(diǎn)A、B關(guān)于直線x=1對稱,
∴當(dāng)QC+QA最小時,△QAC的周長就最小,
而當(dāng)點(diǎn)Q在直線BC上時QC+QA最小,
此時直線BC的解析式為y=x+4,
當(dāng)x=﹣1.5時,y=2.5,
∴在該拋物線的對稱軸上存在點(diǎn)Q(﹣1.5,2.5),使得△QAC的周長最小
(3)
解:由題意,M(m,﹣m2﹣3m+4),N(m,﹣m)
∴線段MN=﹣m2﹣3m+4﹣(﹣m)=﹣m2﹣2m+4=﹣(m+1)2+5
∵S四邊形BNCM=S△BMN+S△CMN=0.5MN×BO=2MN=﹣2(m+1)2+10
∴當(dāng)m=﹣1時(在
內(nèi)),四邊形BNCM的面積S最大.
![]()
【解析】(1)A,B的坐標(biāo)代入拋物線y=﹣x2+bx+c確定解析式.(2)A,B關(guān)于對稱軸對稱,BC與對稱軸的交點(diǎn)就是點(diǎn)Q.(3)四邊形BNCM的面積等于△MNB面積+△MNC的面積.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解二次函數(shù)的圖象的相關(guān)知識,掌握二次函數(shù)圖像關(guān)鍵點(diǎn):1、開口方向2、對稱軸 3、頂點(diǎn) 4、與x軸交點(diǎn) 5、與y軸交點(diǎn),以及對二次函數(shù)的性質(zhì)的理解,了解增減性:當(dāng)a>0時,對稱軸左邊,y隨x增大而減小;對稱軸右邊,y隨x增大而增大;當(dāng)a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減小.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=90°,以BC為直徑作⊙O,交AC于D,E為
的中點(diǎn),連接CE,BE,BE交AC于F. ![]()
(1)求證:AB=AF;
(2)若AB=3,BC=4,求CE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠l=∠2,DE⊥BC,AB⊥BC,那么∠A=∠3嗎?說明理由.
![]()
解:∠A=∠3,理由如下:
∵DE⊥BC,AB⊥BC(已知)
∴∠DEB=∠ABC=90° ( )
∴∠DEB+( )=180°
∴DE∥AB ( )
∴∠1=∠A( )
∠2=∠3( )
∵∠l=∠2(已知)
∴∠A=∠3( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖.電路圖上有四個開關(guān)A、B、C、D和一個小燈泡,閉合開關(guān)D或同時閉合開關(guān)A,B,C都可使小燈泡發(fā)光. ![]()
(1)任意閉合其中一個開關(guān),則小燈泡發(fā)光的概率等于;
(2)任意閉合其中兩個開關(guān),請用畫樹狀圖或列表的方法求出小燈泡發(fā)光的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC的外角∠ACD的平分線CP與∠ABC平分線BP交于點(diǎn)P,若∠BPC=40°,則∠CAP的度數(shù)是( )
![]()
A. 30°; B. 40°; C. 50°; D. 60°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,∠ABC=30°,AC=1,將Rt△ABC繞點(diǎn)A逆時針旋轉(zhuǎn)30°后得到△AB′C′,則圖中陰影部分的面積是 . ![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】光速約為300 000千米/秒,將數(shù)字300 000用科學(xué)記數(shù)法表示為( )
A.3×104B.3×105C.3×106D.30×104
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了解學(xué)生對三種國慶活動方案的意見,對該校學(xué)生進(jìn)行了一次抽樣調(diào)查(被調(diào)查學(xué)生至多贊成其中的一種方案),現(xiàn)將調(diào)查結(jié)果繪制成如圖兩幅不完整的統(tǒng)計(jì)圖. ![]()
請根據(jù)圖中提供的信息解答下列問題:
(1)在這次調(diào)查中共調(diào)查了名學(xué)生;扇形統(tǒng)計(jì)圖中方案1所對應(yīng)的圓心角的度數(shù)為度;
(2)請把條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)已知該校有1000名學(xué)生,試估計(jì)該校贊成方案1的學(xué)生約有多少人?
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com