【題目】已知,如圖,在
中,
,
于
,
的平分線交
于
,交
于
,
的角平分線
交
于
,交
于
.
![]()
(1)求證:
;
(2)判斷
與
的位置關系,并說明理由.
(3)再找出二組相等的線段:①________;②___________.
【答案】(1)見解析;(2)
,理由見解析;(3)①
,②![]()
【解析】
(1)利用等角的余角相等結合對頂角相等即可證明結論;
(2)利用(1)的結論,根據等腰三角形三線合一的性質即可證得
與
相互垂直;
(3)根據(2)的結論知
,利用三角形外角的性質可得∠AGB=∠GAC+∠C,利用同角的余角相等的性質證得∠BAD=∠C,根據角平分線的性質即可證得∠AGB=∠BAG,得到BA=BG.
(1) ∵
,
,
∴
,
,
又∵
平分
,
∴
,
∴
,
∵
,
∴
,
∴
;
(2)
,
理由如下:
由(1)得
,
∵
平分
,
∴
(三線合一),
∴
;
(3)由(2)得:
;
∵
,
,
∴
,
,
∴
,
∵
平分
,
∴
,
∵∠AGB=∠GAC+∠C,∠BAG=∠BAD+∠DAG,
∴∠AGB=∠BAG,
∴
.
故答案為:
,
.
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,將△ABC繞頂點C逆時針旋轉得到△A′B′C′,M是BC的中點,P是A'B’的中點,連接PM,若BC=4,AC=3,則在旋轉的過程中,線段PM的長度不可能是( )
![]()
A.5B.4.5C.2.5D.0.5
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知一次函數
,其中
.
(1)若點
在y1的圖象上.求a的值:
(2)當
時.若函數有最大值2.求y1的函數表達式;
(3)對于一次函數
,其中
,若對- -切實數x,
都成立,求a,m需滿足的數量關系及 a的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,A(a,0),B(b,0),C(b,-2a).且
+|b-l|=0.CD∥AB,AD∥BC
(1)直接寫出B、C、D各點的坐標:B 、C 、D ;
(2)如圖1,P(3,10),點E,M在四邊形ABCD的邊上,且E在第二象限.若△PEM是以PE為直角邊的等腰直角三角形,請直接寫出點E的坐標,并對其中一種情況計算說明;
(3)如圖2,F為y軸正半軸上一動點,過F的直線j∥x軸,BH平分∠FBA交直線j于點H.G為BF上的點,且∠HGF=∠FAB,F在運動中FG的長度是否發生變化?若變化,求出變化范圍;若不變,求出定值.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點C,E,F,B在一條直線上,點A,D在BC異側,AB∥CD,AE=DF,∠A=∠D.
![]()
(1)求證:AB=CD;
(2)若AB=CF,∠B=50°,求∠D的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知AB=AC,∠A=36°,AB的中垂線MD交AC于點D,交AB于點M.下列結論:①BD是∠ABC的平分線;②△BCD是等腰三角形;③DC+BC=AB,正確的有( )
![]()
A.3個B.2個C.1個D.0 個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在正方形ABCD中,邊長為2的等邊三角形AEF的頂點E,F分別在BC和CD上,下列結論:①CE=CF;②BD=1+
;③BE+DF=EF;④∠AEB=75°.其中正確的序號是______.
![]()
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com