【題目】如圖,已知等邊三角形ABC的邊長為2,DE是它的中位線,則下面五個結論:①.DE=1②.△CDE∽△CAB ③△CDE 的面積與四邊形ABED的面積之比為1:3 ④梯形ABED的中位線長為
⑤. DG:GB=1:2 ,其中正確的有( )
![]()
A.2個B.3個C.4個D.5個
【答案】D
【解析】
根據三角形中位線定理可得DE=
AB,DE∥AB,進而可得①②的正誤;再根據相似三角形的面積之比等于對應邊之比的平方,可判斷出③的正誤;再根據梯形的中位線定理可計算出④的正誤,然后再證明△DEG∽△BAG,再根據相似三角形的性質可判斷出⑤.
解:如圖:
![]()
∵DE是△ACB的中位線,
∴DE=
AB,DE∥AB,
∵等邊三角形ABC的邊長為2,
∴AB=2,
∴DE=1,故①正確;
∵DE∥AB,
∴△CDE∽△CAB,故②正確;
∵△CDE∽△CAB,
∴
,
∴
,
∴△CDE的面積與四邊形ABED的面積之比為1:3,故③正確;
∵DE=1,AB=2,
∴
(AB+DE)=
,故④正確;
∵DE∥AB,
∴△DEG∽△BAG,
∴
,故⑤正確;
故選:D.
科目:初中數學 來源: 題型:
【題目】小明和小亮分別從甲地和乙地同時出發,沿同一條路相向而行,小明開始跑步,中途改為步行,到達乙地恰好用
小亮騎自行車以
的速度直接到甲地,兩人離甲地的路程
與各自離開出發地的時間
之間的函數圖象如圖所示,
甲、乙兩地之間的路程為______m,小明步行的速度為______
;
求小亮離甲地的路程y關于x的函數表達式,并寫出自變量x的取值范圍;
求兩人相遇的時間.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,直線
經過點A,作AB⊥x軸于點B,將△ABO繞點B逆時針旋轉60°得到△CBD.若點B的坐標為(2, 0),則點C的坐標為( )
![]()
A.(﹣1,
)B.(﹣2,
)C.(
,1)D.(
,2)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖已知在
中,
,
,直角
的頂點
是
的中點,兩邊
、
分別交
和
于點
、
,給出以下五個結論正確的個數有( )
①
;②
;③
≌
;④
是等腰直角三角形;⑤當
在
內繞頂點
旋轉時(點
不與
、
重合),
.
![]()
A.2B.3C.4D.5
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c與x軸分別交于點A、B,與y軸交于點C,且OA=1,OB=3,頂點為D,對稱軸交x軸于點Q.
![]()
(1)求拋物線對應的二次函數的表達式;
(2)點P是拋物線的對稱軸上一點,以點P為圓心的圓經過A、B兩點,且與直線CD相切,求點P的坐標;
(3)在拋物線的對稱軸上是否存在一點M,使得△DCM∽△BQC?如果存在,求出點M的坐標;如果不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】
如圖,直角梯形ABCD中,AB∥DC,
,
,
.動點M以每秒1個單位長的速度,從點A沿線段AB向點B運動;同時點P以相同的速度,從點C沿折線C-D-A向點A運動.當點M到達點B時,兩點同時停止運動.過點M作直線l∥AD,與線段CD的交點為E,與折線A-C-B的交點為Q.點M運動的時間為t(秒).
![]()
(1)當
時,求線段
的長;
(2)當0<t<2時,如果以C、P、Q為頂點的三角形為直角三角形,求t的值;
(3)當t>2時,連接PQ交線段AC于點R.請探究
是否為定值,若是,試求這個定值;若不是,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知PA,PB分別與⊙O相切于點A,B,∠APB=76°,C為⊙O上一點.
(Ⅰ)如圖①,求∠ACB的大小;
(Ⅱ)如圖②,AE為⊙O的直徑,AE與BC相交于點D,若AB=AD.求∠EAC的大小.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某青春黨支部在精準扶貧活動中,給結對幫扶的貧困家庭贈送甲、乙兩種樹苗讓其栽種.已知乙種樹苗的價格比甲種樹苗貴10元,用480元購買乙種樹苗的棵數恰好與用360元購買甲種樹苗的棵數相同.
(1)求甲、乙兩種樹苗每棵的價格各是多少元?
(2)在實際幫扶中,他們決定再次購買甲、乙兩種樹苗共50棵,此時,甲種樹苗的售價比第一次購買時降低了10%,乙種樹苗的售價不變,如果再次購買兩種樹苗的總費用不超過1500元,那么他們最多可購買多少棵乙種樹苗?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線
與x軸交于A、B兩點,與y軸交于C點,且A(﹣1,0).
![]()
(1)求拋物線的解析式及頂點D的坐標;
(2)判斷△ABC的形狀,證明你的結論;
(3)點M是拋物線對稱軸上的一個動點,當CM+AM的值最小時,求M的坐標;
(4)在線段BC下方的拋物線上有一動點P,求△PBC面積的最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com