【題目】計算:(﹣10)﹣(﹣2)+(﹣6)﹣11
科目:初中數學 來源: 題型:
【題目】《九章算術》是中國古代的數學專著,奠定了中國傳統數學的基本框架.它的代數成就主要包括開方術、正負術和方程術.其中,方程術是《九章算術》最高的數學成就.《九章算術》中記載:“今有共買羊,人出五,不足四十五;人出七,不足三.問人數、羊價各幾何?”譯文:“假設有若干人共同出錢買羊,如果每人出5錢,那么還差45錢;如果每人出7錢那么仍舊差3錢,求買羊的人數和羊的價錢.”設共有x個人買羊,可列方程為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小紅和小明在研究一個數學問題:已知AB∥CD,AB和CD都不經過點E,探索∠E與∠A,∠C的數量關系. ![]()
(1)發現:在圖1中,小紅和小明都發現:∠AEC=∠A+∠C; 小紅是這樣證明的:如圖7過點E作EQ∥AB.
∴∠AEQ=∠A()
∵EQ∥AB,AB∥CD.
∴EQ∥CD()
∴∠CEQ=∠C
∴∠AEQ+∠CEQ=∠A+∠C 即∠AEC=∠A+∠C.
小明是這樣證明的:如圖7過點E作EQ∥AB∥CD.
∴∠AEQ=∠A,∠CEQ=∠C
∴∠AEQ+∠CEQ=∠A+∠C即∠AEC=∠A+∠C
請在上面證明過程的橫線上,填寫依據:
兩人的證明過程中,完全正確的是 .
(2)嘗試: ①在圖2中,若∠A=110°,∠C=130°,則∠E的度數為;
②在圖3中,若∠A=20°,∠C=50°,則∠E的度數為 .
(3)探索: 裝置圖4中,探索∠E與∠A,∠C的數量關系,并說明理由.
(4)猜想: 如圖5,∠B、∠D、∠E、∠F、∠G之間有什么關系?(直接寫出結論)
(5)如圖6,你可以得到什么結論?(直接寫出結論)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,Rt△OAB的頂點B在x軸的正半軸上,已知∠OBA=90°,OB=3,sin∠AOB=
.反比例函數y=
(x>0)的圖象經過點A.
(1)求反比例函數的解析式;
(2)若點C(m,2)是反比例函數y=
(x>0)圖象上的點,則在x軸上是否存在點P,使得PA+PC最小?若存在,求出點P的坐標;若不存在,說明理由.
![]()
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com