【題目】如圖,已知:正方形ABCD,點E在CB的延長線上,連接AE、DE,DE與邊AB交于點F,FG∥BE交AE于點G.
(1)求證:GF=BF;
(2)若EB=1,BC=4,求AG的長;
(3)在BC邊上取點M,使得BM=BE,連接AM交DE于點O.求證:FOED=ODEF.
![]()
【答案】(1)證明見解析;(2)AG=
;(3)證明見解析.
【解析】
(1)根據正方形的性質得到AD∥BC,AB∥CD,AD=CD,根據相似三角形的性質列出比例式,等量代換即可;
(2)根據勾股定理求出AE,根據相似三角形的性質計算即可;
(3)延長GF交AM于H,根據平行線分線段成比例定理得到
,由于BM=BE,得到GF=FH,由GF∥AD,得到
,
等量代換得到
,即
,于是得到結論.
(1)∵四邊形ABCD是正方形,
∴AD∥BC,AB∥CD,AD=CD,
∵GF∥BE,
∴GF∥BC,
∴GF∥AD,
∴
,
∵AB∥CD,
,
∵AD=CD,
∴GF=BF;
(2)∵EB=1,BC=4,
∴
=4,AE=
,
∴
=4,
∴AG=
;
(3)延長GF交AM于H,
![]()
∵GF∥BC,
∴FH∥BC,
∴
,
∴
,
∵BM=BE,
∴GF=FH,
∵GF∥AD,
∴
,
,
∴
,
∴
,
∴FOED=ODEF.
科目:初中數學 來源: 題型:
【題目】類比、轉化、從特殊到一般等思想方法,在數學學習和研究中經常用到,如下是一個案例,請補充完整,原題:如圖1,在平行四邊形ABCD中,點E是BC的中點,點F是線段AE上一點,BF的延長線交射線CD于點G.若
=3,求
的值.
![]()
(1)嘗試探究:
在圖1中,過點E作EH∥AB交BG于點H,則AB和EH的數量關系是________,
CG和EH的數量關系是________,
的值是________.
(2)類比延伸:
如圖2,在原題條件下,若
=m(m>0)則
的值是________(用含有m的代數式表示),試寫出解答過程.
(3)拓展遷移:
如圖3,梯形ABCD中,DC∥AB,點E是BC的延長線上的一點,AE和BD相交于點F,若
=a,
=b(a>0,b>0)則
的值是________(用含a、b的代數式表示).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一個批發商銷售成本為20元/千克的某產品,根據物價部門規定:該產品每千克售價不得超過90元,在銷售過程中發現的售量y(千克)與售價x(元/千克)滿足一次函數關系,對應關系如下表:
售價x(元/千克) | … | 50 | 60 | 70 | 80 | … |
銷售量y(千克) | … | 100 | 90 | 80 | 70 | … |
(1)求y與x的函數關系式;
(2)該批發商若想獲得4000元的利潤,應將售價定為多少元?
(3)該產品每千克售價為多少元時,批發商獲得的利潤w(元)最大?此時的最大利潤為多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】滿足下列條件的△ABC不是直角三角形的是( )
A.∠A:∠B:∠C=2:3:5B.∠A:∠B:∠C=3:4:5
C.∠A﹣∠B=∠CD.BC=3,AC=4,AB=5
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,E、F分別是BC邊,CD邊的中點,AE、AF分別交BD于點G,H,設△AGH的面積為S1,平行四邊形ABCD的面積為S2,則S1:S2的值為( 。
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形OABC是一張放在平面直角坐標系中的矩形紙片,O為原點,點A在x軸的正半軸上,點C在y軸的正半軸上,OA=5,OC=4.
![]()
(1)如圖①,在AB上取一點D,將紙片沿OD翻折,使點A落在BC邊上的點E處,求D、E兩點的坐標;
(2)如圖②,若OE上有一動點P(不與O,E重合),從點O出發,以每秒1個單位的速度沿OE方向向點E勻速運動,設運動時間為t秒(0<t<5),過點P作PM⊥OE交OD于點M,連接ME,求當t為何值時,以點P、M、E為頂點的三角形與△ODA相似?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知拋物線y=x2﹣(m+1)x+m
(1)求證:拋物線與x軸一定有交點;
(2)若拋物線與x軸交于A(x1,0),B(x2,0)兩點,x1<0<x2,且
,求m的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知二次函數y=ax2+bx+c(a≠0)的圖象如圖所示,有下列4個結論:①abc>0;②b<a+c;③4a+2b+c>0;④b2-4ac>0;其中正確的結論有________(填序號)
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】“新中梁山隧道”于2017年11月21日開放通行,原中梁山隧道將封閉升級,擴容改造工程預計2018年3月全部完工,屆時將實現雙向8車道通行,隧道通行能力將增加一倍,沿線交通擁堵狀況將有所緩解.圖中線段AB表示該工程的部分隧道.無人勘測機從隧道側的A點出發時,測得C點正上方的E點的仰角為45°,無人機飛行到E點后,沿著坡度i=1:3的路線EB飛行,飛行到D點正上方的F點時,測得A點的俯角為12°,其中EC=100米,A、B、C、D、E、F在同一平面內,則隧道AD段的長度約為( )米,(參考數據:tan12°≈0.2,cosl2°≈0.98)
![]()
A. 200 B. 250 C. 300 D. 540
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com