【題目】解方程:
(1)
;
(2)
;
(3)
;
(4)
.
【答案】(1)x1=6,x2=-1;(2)x1=
,x2=
;(3)x1=7,x2=5;(4)x1=-8,x2=
.
【解析】
(1)利用因式分解法解方程即可;(2)利用公式法解方程即可;(3)利用因式分解法解方程即可;(3)利用直接開平方法解方程即可.
(1)
,
(x-6)(x+1)=0,
x-6=0或x+1=0,
∴x1=6,x2=-1.
(2)![]()
a=2,b=-4,c=-1,
△=16+8=24>0,
x=
,
∴x1=
,x2=
.
(3)
,
(x-7)(x-7+2)=0,
x-7=0或x-7+2=0,
∴x1=7,x2=5.
(4)
,
3x+2=±2(x-3),
3x+2=2(x-3)或3x+2=-2(x-3),
∴x1=-8,x2=
.
科目:初中數學 來源: 題型:
【題目】如圖,已知∠1=∠2,要使△ABD≌△ACD,需從下列條件中增加一個,錯誤的選法是( )
![]()
A.∠ADB=∠ADCB.∠B=∠CC.AB=ACD.DB=DC
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某批彩色彈力球的質量檢驗結果如下表:
抽取的彩色彈力球數n | 500 | 1000 | 1500 | 2000 | 2500 |
優等品頻數m | 471 | 946 | 1426 | 1898 | 2370 |
優等品頻率 | 0.942 | 0.946 | 0.951 | 0.949 | 0.948 |
(1)請在圖中完成這批彩色彈力球“優等品”頻率的折線統計圖
(2)這批彩色彈力球“優等品”概率的估計值大約是多少?(精確到0.01)
(3)從這批彩色彈力球中選擇5個黃球、13個黑球、22個紅球,它們除了顏色外都相同,將它們放入一個不透明的袋子中,求從袋子中摸出一個球是黃球的概率.
(4)現從第(3)問所說的袋子中取出若干個黑球,并放入相同數量的黃球,攪拌均勻,使從袋子中摸出一個黃球的概率為
,求取出了多少個黑球?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】湖南師大附中組織集團校內七、八、九年級學生參加“12KM”作文比賽,該校將收到的參賽作文進行分年級統計,繪制了如圖1和如圖2兩幅不完整的統計圖,根據圖中提供的信息完成以下問題.
![]()
(1)扇形統計圖中九年級參賽作文篇數對應的圓心角是 度.八年級參賽作文篇數對應的百分比是 .
(2)請補全條形統計圖.
(3)經過評審,全集團校內有4篇作文榮獲特等獎,其中一篇來自九年級,學校準備從特等獎作文中任選兩篇刊登在校報上,請利用畫樹狀圖或列表的方法求出九年級特等獎作文被選登在校報上的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知△ABC,求作一點P,使P到∠A的兩邊的距離相等,且PA=PB、下列確定P點的方法正確的是( 。
![]()
A.P為∠A、∠B兩角平分線的交點
B.P為AC、AB兩邊上的高的交點
C.P為∠A的角平分線與AB的垂直平分線的交點
D.P為AC、AB兩邊的垂直平分線的交點
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,△ABC中,點O是AC上的一動點,過點O作直線MN∥AB,設MN交∠BCA的平分線于點E,交∠BCA的外角∠ACG的平分線于點F連接AE、AF.
(1)求證:∠ECF=90°;
(2)當點O運動到何處時,四邊形AECF是矩形?請說明理由;
(3)在(2)的條件下,△ABC應該滿足條件:______________,就能使矩形AECF變為正方形。(直接添加條件,無需證明)
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀下面材料:
小昊遇到這樣一個問題:如圖1,在△ABC中,∠ACB=90°,BE是AC邊上的中線,點D在BC邊上,CD:BD=1:2,AD與BE相交于點P,求
的值.
小昊發現,過點A作AF∥BC,交BE的延長線于點F,通過構造△AEF,經過推理和計算能夠使問題得到解決(如圖2).請回答:
的值為 .
參考小昊思考問題的方法,解決問題:
如圖 3,在△ABC中,∠ACB=90°,點D在BC的延長線上,AD與AC邊上的中線BE的延長線交于點P,DC:BC:AC=1:2:3 .
(1)求
的值;
(2)若CD=2,則BP=__________.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲、乙兩家快遞公司攬件員(攬收快件的員工)的日工資方案如下:
甲公司為“基本工資+攬件提成”,其中基本工資為70元/日,每攬收一件提成2元;
乙公司無基本工資,僅以攬件提成計算工資.若當日攬件數不超過40,每件提成4元;若當日攪件數超過40,超過部分每件多提成2元.
如圖是今年四月份甲公司攬件員人均攬件數和乙公司攪件員人均攬件數的條形統計圖:
![]()
(1)現從今年四月份的30天中隨機抽取1天,求這一天甲公司攬件員人均攬件數超過40(不含40)的概率;
(2)根據以上信息,以今年四月份的數據為依據,并將各公司攬件員的人均攬件數視為該公司各攬件員的
攬件數,解決以下問題:
①估計甲公司各攬件員的日平均件數;
②小明擬到甲、乙兩家公司中的一家應聘攬件員,如果僅從工資收入的角度考慮,請利用所學的統計知識幫他選擇,井說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=6,BC=8.
![]()
(1)以直線BC為軸,把△ABC旋轉一周,求所得圓錐的底面圓周長.
(2)以直線AC為軸,把△ABC旋轉一周,求所得圓錐的側面積;
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com