【題目】如圖,在
ABCD中,點(diǎn)E是AD邊上一點(diǎn),AE:ED=1:2,連接AC、BE交于點(diǎn)F.若S△AEF=1,則S四邊形CDEF=_______.
![]()
【答案】11
【解析】
先根據(jù)平行四邊形的性質(zhì)易得
,根據(jù)相似三角形的判定可得△AFE∽△CFB,再根據(jù)相似三角形的性質(zhì)得到△BFC的面積,
,進(jìn)而得到△AFB的面積,即可得△ABC的面積,再根據(jù)平行四邊形的性質(zhì)即可得解.
解:∵AE:ED=1:2,
∴AE:AD=1:3,
∵AD=BC,
∴AE:BC=1:3,
∵AD∥BC,
∴△AFE∽△CFB,
∴
,
∴
,
∴S△BCF=9,
∵
,
∴S△AFB=3,
∴S△ACD =S△ABC = S△BCF+S△AFB=12,
∴S四邊形CDEF=S△ACD﹣S△AEF=12﹣1=11.
故答案為:11.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校八年級(jí)學(xué)生小麗、小強(qiáng)和小紅到某超市參加了社會(huì)實(shí)踐活動(dòng),在活動(dòng)中他們參與了某種水果的銷售工作.已知該水果的進(jìn)價(jià)為8元/千克,下面是他們?cè)诨顒?dòng)結(jié)束后的對(duì)話.
小麗:如果以10元/千克的價(jià)格銷售,那么每天可售出300千克.
小強(qiáng):如果每千克的利潤(rùn)為3元,那么每天可售出250千克.
小紅:如果以13元/千克的價(jià)格銷售,那么每天可獲取利潤(rùn)750元.
【利潤(rùn)=(銷售價(jià)-進(jìn)價(jià))
銷售量】
(1)請(qǐng)根據(jù)他們的對(duì)話填寫下表:
銷售單價(jià)x(元/kg) | 10 | 11 | 13 |
銷售量y(kg) |
(2)請(qǐng)你根據(jù)表格中的信息判斷每天的銷售量y(千克)與銷售單價(jià)x(元)之間存在怎樣的函數(shù)關(guān)系.并求y(千克)與x(元)(x>0)的函數(shù)關(guān)系式;
(3)設(shè)該超市銷售這種水果每天獲取的利潤(rùn)為W元,求W與x的函數(shù)關(guān)系式.當(dāng)銷售單價(jià)為何值時(shí),每天可獲得的利潤(rùn)最大?最大利潤(rùn)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一座拋物線型拱橋,在正常水位時(shí)水面
的寬為18米,拱頂
離水面
的距離
為9米,建立如圖所示的平面直角坐標(biāo)系.
![]()
(1)求此拋物線的解析式;
(2)一艘貨船在水面上的部分的橫斷面是矩形
.
①如果限定矩形的長(zhǎng)
為12米,那么要使船通過拱橋,矩形的高
不能超過多少米?
②若點(diǎn)
,
都在拋物線上,設(shè)
,當(dāng)
的值最大時(shí),求矩形
的高.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為檢測(cè)“停課不停學(xué)”期間九年級(jí)學(xué)生的復(fù)習(xí)情況,進(jìn)行了中考數(shù)學(xué)模擬測(cè)試并從中隨機(jī)抽取了部分學(xué)生的測(cè)試成績(jī)分成
個(gè)小組,根據(jù)每個(gè)小組的人數(shù)繪制如圖所示的尚不完整的頻數(shù)分布直方圖.
![]()
請(qǐng)根據(jù)信息回答下列問題:
若成績(jī)?cè)?/span>
分的頻率為
,請(qǐng)計(jì)算抽取的學(xué)生人數(shù)并補(bǔ)全頻數(shù)分布直方圖;
在此次測(cè)試中,抽取學(xué)生成績(jī)的中位數(shù)在______ 分?jǐn)?shù)段中;
若該校九年級(jí)共有
名學(xué)生,成績(jī)?cè)?/span>
分以上的(含
分)為優(yōu)秀,請(qǐng)通過計(jì)算說明,大約有多少名學(xué)生在本次測(cè)試中數(shù)學(xué)成績(jī)?yōu)閮?yōu)秀.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】
中,
,
的頂點(diǎn)
是底邊
的中點(diǎn),兩邊分別與
交于點(diǎn)
.
![]()
(1)如圖1,
,當(dāng)
的位置變化時(shí),
是否隨之變化?證明你的結(jié)論;
(2)如圖2,當(dāng)
,當(dāng)
°時(shí),(1)中的結(jié)論仍然成立,求出此時(shí)
的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,點(diǎn)O在AC上,以OA為半徑的⊙O交AB于點(diǎn)D,BD的垂直平分線交BC于點(diǎn)E,交BD于點(diǎn)F,連接DE.
(1)判斷直線DE與⊙O的位置關(guān)系,并說明理由;
(2)若AC=3,BC=4,OA=1,求線段DE的長(zhǎng).
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,點(diǎn)E是BC邊上一動(dòng)點(diǎn)(不與點(diǎn)C重合)對(duì)角線AC與BD相交于點(diǎn)O,連接AE,交BD于點(diǎn)G.
(1)根據(jù)給出的△AEC,作出它的外接圓⊙F,并標(biāo)出圓心F(不寫作法和證明,保留作圖痕跡);
(2)在(1)的條件下,連接EF.①求證:∠AEF=∠DBC;
②記t=GF2+AGGE,當(dāng)AB=6,BD=6
時(shí),求t的取值范圍.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長(zhǎng)為1的小正方形組成的網(wǎng)格中,四邊形ABCD的四個(gè)頂點(diǎn)都在格點(diǎn)上,請(qǐng)按要求完成下列各題.
![]()
(1)線段AB的長(zhǎng)為__,BC的長(zhǎng)為__,CD的長(zhǎng)為__,AD的長(zhǎng)為__;
(2)連接AC,通過計(jì)算△ACD的形狀是__;△ABC的形狀是__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將含30°角的直角三角板ABC(∠A=30°)繞其直角頂點(diǎn)C順時(shí)針旋轉(zhuǎn)α角(0°<α<90°),得到Rt△A′B′C,A′C與AB交于點(diǎn)D,過點(diǎn)D作DE∥A′B′交CB′于點(diǎn)E,連接BE.易知,在旋轉(zhuǎn)過程中,△BDE為直角三角形.設(shè)BC=1,AD=x,△BDE的面積為S.
(1)當(dāng)α=30°時(shí),求x的值.
(2)求S與x的函數(shù)關(guān)系式,并寫出x的取值范圍;
(3)以點(diǎn)E為圓心,BE為半徑作⊙E,當(dāng)S=
時(shí),判斷⊙E與A′C的位置關(guān)系,并求相應(yīng)的tanα值.
![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com