【題目】如圖,有一個直角三角形紙片,兩直角邊AC=6cm,BC=8cm,現將直角邊AC沿直線AD折疊,使它落在斜邊AB上,且與AE重合,你能求出CD的長嗎?若能,請給出求解過程.
![]()
科目:初中數學 來源: 題型:
【題目】如圖,
,點D在邊BC上
與B、C不重合
,四邊形ADEF為正方形,過點F作
,交CA的延長線于點G,連接FB,交DE于點Q,給出以下結論:
;
:
:2;
;
其中正確的結論的個數是![]()
![]()
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知拋物線E1:y=x2經過點A(1,m),以原點為頂點的拋物線E2經過點B(2,2),點A、B關于y 軸的對稱點分別為點A′,B′.![]()
(1)求m的值;
(2)求拋物線E2所表示的二次函數的表達式;
(3)在第一象限內,拋物線E1上是否存在點Q,使得以點Q、B、B′為頂點的三角形為直角三角形?若存在,求出點Q的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示:
![]()
(1)折疊數軸,若1表示的點與-1表示的點重合,則-2表示的點與數 表示的點重合;
(2)折疊數軸,若-1表示的點與5表示的點重合,則4表示的點與 表示的點重合;
(3)已知數軸上點A表示的數是-1,點B表示的數是2,若點A以每秒1個單位長度的速度在數軸上移動,點B以每秒2個單位長度的速度在數軸上移動,且點A始終在點B的左側,求經過幾秒時,A、B兩點的距離為6個單位長度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一條拋物線與x軸相交于A、B兩點,其頂點P在折線C﹣D﹣E上移動,若點C、D、E的坐標分別為(﹣1,4)、(3,4)、(3,1),點B的橫坐標的最小值為1,則點A的橫坐標的最大值為( 。![]()
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,D是AB的中點,E是CD的中點, 過點C作CF//AB交AE的延長線于點F,連接BF.
(1) 求證:DB=CF;
(2) 如果AC=BC,試判斷四邊形BDCF的形狀,并證明你的結論.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC中,點O是AC邊上的一個動點,過點O作直線MN∥BC,設MN交∠BCA的平分線于點E,交∠BCA的外角平分線于點F.
(1)判斷OE與OF的大小關系?并說明理由?
(2)當點O在邊AC上運動時,四邊形BCFE會是菱形嗎?若是,請證明;若不是,則說明理由;
(3)當點O運動到何處時,四邊形AECF是矩形?并說出你的理由.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在學習了數軸后,小亮決定對數軸進行變化應用:
(1)應用一:已知點A在數軸上表示為
,數軸上任意一點B表示的數為
,則AB兩點的距離可以表示為 ;應用這個知識,請寫出當
時,
有最小值為 .
![]()
(2)應用二:從數軸上取下一個單位長度的線段,第一次剪掉原長的
,第二次剪掉剩下的
,依次類推,每次都剪掉剩下的
,則剪掉5次后剩下線段長度為 ;應用這個原理,請計算:
.
(3)應用三:如圖,將一根拉直的細線看作數軸,一個三邊長分別為
的三角形
的頂點
與原點重合,
邊在數軸正半軸上,將數軸正半軸的線沿
的順序依次纏繞在三角形
的邊上,負半軸的線沿
的順序依次纏繞在三角形
的邊上.
①如果正半軸的線纏繞了5圈,負半軸的線纏繞了3圈,求繞在點
上的所有數之和;
②如果正半軸的線不變,將負半軸的線拉長一倍,即原線上的點
的位置對應著拉長后的數
,并將三角形
向正半軸平移一個單位后再開始繞,求繞在點
且絕對值不超過100的所有數之和.
![]()
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com