【題目】如圖,一次函數y=kx+b的圖象與x軸交于點A,與反比例函數y=
(x>0)的圖象交于點B(2,n),過點B作BC⊥x軸于點C,點P(3n﹣4,1)是該反比例函數圖象上的一點,且∠PBC=∠ABC,求反比例函數和一次函數的表達式. ![]()
【答案】解:∵點B(2,n)、P(3n﹣4,1)在反比例函數y=
(x>0)的圖象上,
∴
.
解得:m=8,n=4.
∴反比例函數的表達式為y=
.
∵m=8,n=4,
∴點B(2,4),(8,1).
過點P作PD⊥BC,垂足為D,并延長交AB與點P′.![]()
在△BDP和△BDP′中,![]()
∴△BDP≌△BDP′.
∴DP′=DP=6.
∴點P′(﹣4,1).
將點P′(﹣4,1),B(2,4)代入直線的解析式得:
,
解得:
.
∴一次函數的表達式為y=
x+3
【解析】將點B(2,n)、P(3n﹣4,1)代入反比例函數的解析式可求得m、n的值,從而求得反比例函數的解析式以及點B和點P的坐標,過點P作PD⊥BC,垂足為D,并延長交AB與點P′.接下來證明△BDP≌△BDP′,從而得到點P′的坐標,最后將點P′和點B的坐標代入一次函數的解析式即可求得一次函數的表達式.本題主要考查的是一次函數和反比例函數的綜合應用,根據題意列出方程組是解題的關鍵.
科目:初中數學 來源: 題型:
【題目】已知平行四邊形ABCD的頂點A在第三象限,對角線AC的中點在坐標原點,一邊AB與x軸平行且AB=2,若點A的坐標為(a,b),則點D的坐標為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知|a+b|+|a-b|-2b=0,在數軸上給出關于a,b的四種位置關系如圖所示,則可能成立的有( )
![]()
A. 1種 B. 2種 C. 3種 D. 4種
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線l:y=﹣3x+3與x軸、y軸分別相交于A、B兩點,拋物線y=ax2﹣2ax+a+4(a<0)經過點B.![]()
(1)求該拋物線的函數表達式;
(2)已知點M是拋物線上的一個動點,并且點M在第一象限內,連接AM、BM,設點M的橫坐標為m,△ABM的面積為S,求S與m的函數表達式,并求出S的最大值;
(3)在(2)的條件下,當S取得最大值時,動點M相應的位置記為點M′.
①寫出點M′的坐標;
②將直線l繞點A按順時針方向旋轉得到直線l′,當直線l′與直線AM′重合時停止旋轉,在旋轉過程中,直線l′與線段BM′交于點C,設點B、M′到直線l′的距離分別為d1、d2 , 當d1+d2最大時,求直線l′旋轉的角度(即∠BAC的度數).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,在長方形
中,AB=4cm,BC=6cm,點
為
中點,如果點
在線段
上以每秒2cm的速度由點
向點
運動,同時,點
在線段
上由點
向點
運動.設點
運動時間為
秒,若某一時刻△BPE與△CQP全等,求此時
的值及點
的運動速度.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】設三角形三個內角的度數分別為x,y,z,如果其中一個角的度數是另一個角的度數的2倍,那么我們稱數對(y,z)(y≤z)是x的和諧數對.例:當x=150°時,對應的和諧數對有一個,它為(10,20);當x=66時,對應的和諧數對有二個,它們為(33,81),(38,76).當對應的和諧數對(y,z)有三個時,此時x的取值范圍是____________.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com