【題目】在⊙O中,半徑為4,弦AB的長為
,弦AB所對的圓周角的度數為_____________.
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,二次函數y=x2+2x﹣3的圖象如圖所示,點A(x1,y1),B(x2,y2)是該二次函數圖象上的兩點,其中﹣3≤x1<x2≤0,則下列結論正確的是( 。
![]()
A. y1<y2B.y1>y2C.y的最小值是﹣3 D.y的最小值是﹣4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,BC>AB>AC.甲、乙兩人想在BC上取一點P,使得∠APC=2∠ABC,其作法如下:
(甲)作AB的中垂線,交BC于P點,則P即為所求;
(乙)以B為圓心,AB長為半徑畫弧,交BC于P點,則P即為所求.
對于兩人的作法,下列判斷何者正確?( 。
![]()
A. 兩人皆正確B. 兩人皆錯誤C. 甲正確,乙錯誤D. 甲錯誤,乙正確
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】工人師傅用一塊長為10dm,寬為6dm的矩形鐵皮制作一個無蓋的長方體容器,需要將四角各裁掉一個正方形.(厚度不計)
![]()
(1)在圖中畫出裁剪示意圖,用實線表示裁剪線,虛線表示折痕;并求長方體底面面積為12dm2時,裁掉的正方形邊長多大?
(2)若要求制作的長方體的底面長不大于底面寬的五倍,并將容器進行防銹處理,側面每平方分米的費用為0.5元,底面每平方分米的費用為2元,裁掉的正方形邊長多大時,總費用最低,最低為多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,已知AB=BC=CA=4cm,AD⊥BC于D,點P,Q分別從BC兩點同時出發,其中點P沿BC向終點C運動.速度為1cm/s;點Q沿CA、AB向終點B運動,速度為2cm/s,設它們運動的時間為x(s).
(1)求x為何值時,PQ⊥AC;
(2)設△PQD的面積為y(cm2),當0<x<2時,求y與x的函數關系式;
(3)探索以PQ為直徑的圓與AC的位置關系,請寫出相應位置關系的x的取值范圍.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】港珠澳大橋是世界上最長的跨海大橋.如圖是港珠澳大橋的海豚塔部分效果圖,為了測得海豚塔斜拉索頂端A距離海平面的高度,先測出斜拉索底端C到橋塔的距離(CD的長)約為100米,又在C點測得A點的仰角為30°,測得B點的俯角為20°,求斜拉索頂端A點到海平面B點的距離(AB的長).(已知
≈1.732,tan20°≈0.36,結果精確到0.1)
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】對于某一函數給出如下定義:對于任意實數
,當自變量
時,函數
關于
的函數圖象為
,將
沿直線
翻折后得到的函數圖象為
,函數
的圖象由
和
兩部分共同組成,則函數
為原函數的“對折函數”,如函數
(
)的對折函數為
.
(1)求函數
(
)的對折函數;
(2)若點
在函數
(
)的對折函數的圖象上,求
的值;
(3)當函數
(
)的對折函數與
軸有不同的交點個數時,直接寫出
的取值范圍.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,以點A為中心,把△ABC逆時針旋轉120°,得到△AB'C′(點B、C的對應點分別為點B′、C′),連接BB',若AC'∥BB',則∠CAB'的度數為( 。
![]()
A.45°B.60°C.70°D.90°
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com