題目列表(包括答案和解析)
已知函數(shù)![]()
(Ⅰ)若函數(shù)f(x)在[1,2]上是減函數(shù),求實數(shù)a的取值范圍;
(Ⅱ)令g(x)= f(x)-x2,是否存在實數(shù)a,當(dāng)x∈(0,e](e是自然常數(shù))時,函數(shù)g(x)的最小值是3,若存在,求出a的值;若不存在,說明理由;
(Ⅲ)當(dāng)x∈(0,e]時,證明:![]()
【解析】本試題主要是考查了導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。第一問中利用函數(shù)f(x)在[1,2]上是減函數(shù),的導(dǎo)函數(shù)恒小于等于零,然后分離參數(shù)求解得到a的取值范圍。第二問中,
假設(shè)存在實數(shù)a,使
有最小值3,利用
,對a分類討論,進(jìn)行求解得到a的值。
第三問中,![]()
因為
,這樣利用單調(diào)性證明得到不等式成立。
解:(Ⅰ) ![]()
(Ⅱ) ![]()
(Ⅲ)見解析
![]()
(1)當(dāng)
時,
在
上恒成立,求實數(shù)
的取值范圍;
(2)當(dāng)
時,若函數(shù)
在
上恰有兩個不同零點(diǎn),求實數(shù)
的取值范圍;
(3)是否存在實數(shù)
,使函數(shù)f(x)和函數(shù)
在公共定義域上具有相同的單調(diào)區(qū)間?若存在,求出
的值,若不存在,說明理由。
![]()
(1)當(dāng)
時,
在
上恒成立,求實數(shù)
的取值范圍;
(2)當(dāng)
時,若函數(shù)
在
上恰有兩個不同零點(diǎn),求實數(shù)
的取值范圍;
(3)是否存在實數(shù)
,使函數(shù)f(x)和函數(shù)
在公共定義域上具有相同的單調(diào)區(qū)間?若存在,求出
的值,若不存在,說明理由。
對于函數(shù)
與常數(shù)
,若
恒成立,則稱
為函數(shù)
的一個“P數(shù)對”;若
恒成立,則稱
為函數(shù)
的一個“類P數(shù)對”.設(shè)函數(shù)
的定義域為
,且
.
(1)若
是
的一個“P數(shù)對”,求
;
(2)若
是
的一個“P數(shù)對”,且當(dāng)
時![]()
,求
在區(qū)間![]()
上的最大值與最小值;
(3)若
是增函數(shù),且
是
的一個“類P數(shù)對”,試比較下列各組中兩個式子的大小,并說明理由.
①
與
+2
;②
與![]()
.
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com