題目列表(包括答案和解析)
(本小題滿分12分)
已知直線
經過拋物線
的焦點,且與拋物線交于
兩點,點
為坐標原點.
![]()
(Ⅰ)證明:
為鈍角.
(Ⅱ)若
的面積為
,求直線
的方程;
(本小題滿分12分)
已知直線
過橢圓
的右焦點
,拋物線:
的焦點為橢圓
的上頂點,且直線
交橢圓
于
、
兩點,點
、
、
在直線
上的射影依次為點
、
、
.
(1)求橢圓
的方程;
(2)若直線l交y軸于點
,且
,當
變化時,探求
的值是否為定值?若是,求出
的值,否則,說明理由;
(3)連接
、
,試探索當
變化時,直線
與
是否相交于定點?若是,請求出定點的坐標,并給予證明;否則,說明理由.
(本小題滿分12分)已知直線
過定點
,且與拋物線
交于
、
兩點,拋物線在
、
兩點處的切線的相交于點
.
(I)求點
的軌跡方程;
(II)求三角形
面積的最小值.
![]()
(本小題滿分12分)
已知直線
經過拋物線
的焦點,且與拋物線交于
兩點,點
為坐標原點.![]()
(Ⅰ)證明:
為鈍角.
(Ⅱ)若
的面積為
,求直線
的方程;
一、選擇題:本大題共12小題,每小題5分,共60分.
BCBBA BCDCB DA
二.填空題:本大題共4小題,每小題5分,共20分.
13. 2
14 .
15.
4 16. 
三、解答題(本大題共6小題,共70分,解答應寫出文字說明、證明過程或演算步驟)
17. (本大題共10分)
解:
4分
或
8分
故原不等式的解集為
10分
18. (本小題滿分12分)
解:(1)
,
,且
.
,即
,又
,
……..2分
又由
,
5分
(2)由正弦定理得:
,
7分
又
,
…………9分
,則
.則
,
即
的取值范圍是
…………………
12分
19.(本小題滿分12分)
(1)解:設“射手射擊1次,擊中目標”為事件A
則在3次射擊中至少有兩次連續擊中目標的概率

=
7分
(2)解:射手第3次擊中目標時,恰好射擊了4次的概率
12分
20. (本小題滿分12分)
(Ⅰ)∵
∴
2分
∵
4分
∴
6分
(Ⅱ)∵函數
在區間
上單調遞增
∴
對一切
恒成立
方法1
時成立
當
時,等價于不等式
恒成立
令
當
時取到等號,所以
∴
12分
方法2 設
對稱軸
當
時,要滿足條件,只要
成立
當
時,
,∴
當
時,只要
矛盾
綜合得
12分
21.(本小題滿分12分)
解:(Ⅰ)設
的公差為d,{Bn}的公比為q,則依題意有q>0且

解得d=2,q=2.
所以,
,
6分
(Ⅱ)
錯位相減法得:
n=1,2,3…
12分
22.(本小題滿分12分)
解:(I)由

故
的方程為
點A的坐標為(1,0)
2分
設
由
整理
4分
M的軌跡C為以原點為中心,焦點在x軸上,長軸長為
,短軸長為2的橢圓 5分
(II)如圖,由題意知
的斜率存在且不為零,
設
方程為
①
將①代入
,整理,得
7分
設
、
,則
②
令
由此可得
由②知

,
即
10分


解得
又
面積之比的取值范圍是
12分
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com