題目列表(包括答案和解析)
如圖所示的長方體
中,底面
是邊長為
的正方形,
為
與
的交點,
,
是線段
的中點.
(Ⅰ)求證:
平面
;
(Ⅱ)求證:
平面
;
(Ⅲ)求二面角
的大小.
【解析】本試題主要考查了線面平行的判定定理和線面垂直的判定定理,以及二面角的求解的運用。中利用
,又
平面
,
平面
,∴
平面
由
,
,又
,∴
平面
.
可得證明
(3)因為∴
為面
的法向量.∵
,
,
∴
為平面
的法向量.∴利用法向量的夾角公式,
,
∴
與
的夾角為
,即二面角
的大小為
.
方法一:解:(Ⅰ)建立如圖所示的空間直角坐標系.連接
,則點
、
,
![]()
∴
,又點
,
,∴![]()
∴
,且
與
不共線,∴
.
又
平面
,
平面
,∴
平面
.…………………4分
(Ⅱ)∵
,![]()
∴
,
,即
,
,
又
,∴
平面
. ………8分
(Ⅲ)∵
,
,∴
平面
,
∴
為面
的法向量.∵
,
,
∴
為平面
的法向量.∴
,
∴
與
的夾角為
,即二面角
的大小為![]()
(本題滿分14分) 如圖,
垂直平面
,
,
,點
在
上,且
.
(Ⅰ)求證:
;
(Ⅱ)若二面角
的大小為
,求
的值.
![]()
(本小題滿分14分)如圖,在長方體
中,
,
,點
在棱
上移動。
(1)證明:
;
(2)
等于何值時,二面角
的大小為
.
![]()
(08年浙江卷)(本題14分)如圖,矩形
和梯形
所在平面互相垂直,
,
,
,
.
(Ⅰ)求證:
平面
;
(Ⅱ)當
的長為何值時,二面角
的大小為
?
![]()
(本題滿分14分)如圖,已知平面
平面
=
,
,且
,二面角
.
(Ⅰ)求點
到平面
的距離;
(Ⅱ)設二面角
的大小為
,求
的值.
![]()
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com