如圖所示的長方體
中,底面
是邊長為
的正方形,
為
與
的交點,
,
是線段
的中點.
(Ⅰ)求證:
平面
;
(Ⅱ)求證:
平面
;
(Ⅲ)求二面角
的大。
【解析】本試題主要考查了線面平行的判定定理和線面垂直的判定定理,以及二面角的求解的運用。中利用
,又
平面
,
平面
,∴
平面
由
,
,又
,∴
平面
.
可得證明
(3)因為∴
為面
的法向量.∵
,
,
∴
為平面
的法向量.∴利用法向量的夾角公式,
,
∴
與
的夾角為
,即二面角
的大小為
.
方法一:解:(Ⅰ)建立如圖所示的空間直角坐標系.連接
,則點
、
,
![]()
∴
,又點
,
,∴![]()
∴
,且
與
不共線,∴
.
又
平面
,
平面
,∴
平面
.…………………4分
(Ⅱ)∵
,![]()
∴
,
,即
,
,
又
,∴
平面
. ………8分
(Ⅲ)∵
,
,∴
平面
,
∴
為面
的法向量.∵
,
,
∴
為平面
的法向量.∴
,
∴
與
的夾角為
,即二面角
的大小為![]()
科目:高中數(shù)學 來源:2013屆廣東省高二下期末文科數(shù)學試卷(解析版) 題型:解答題
(本小題滿分14分)
如圖所示的長方體
中,底面
是邊長為
的正方形,
為
與
的交點,
,
是線段
的中點.
![]()
(1)求證:
平面
;
(2)求三棱錐D1-ABC的體積.
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年陜西省西安市高三第一學期期中考試文科數(shù)學 題型:解答題
(12分)如圖所示的長方體
中,
底面
是邊長為
的正方形,
為
與
的交點,
,
是線段
的中點.
(1)求證:
平面
;
(2)求三棱錐
的體積.
![]()
查看答案和解析>>
科目:高中數(shù)學 來源:2010-2011學年廣東省高三第一次月考理科數(shù)學卷 題型:解答題
(本小題滿分14分)
如圖所示的長方體
中,底面
是邊長為
的正方形,
為
與
的交點,
,
是線段
的中點.
(Ⅰ)求證:
平面
;
(Ⅱ)求證:
平面
;
(Ⅲ)求二面角
的大。
![]()
查看答案和解析>>
科目:高中數(shù)學 來源:2010-2011學年廣東省高三第一次月考理科數(shù)學卷 題型:解答題
(本小題滿分14分)
如圖所示的長方體
中,底面
是邊長為
的正方形,
為
與
的交點,
,
是線段
的中點.
(Ⅰ)求證:
平面
;
(Ⅱ)求證:
平面
;
(Ⅲ)求二面角
的大。
![]()
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com