題目列表(包括答案和解析)
已知![]()
(1)求函數(shù)
在
上的最小值
(2)對(duì)一切的
恒成立,求實(shí)數(shù)a的取值范圍
(3)證明對(duì)一切
,都有
成立
【解析】第一問(wèn)中利用
當(dāng)
時(shí),
在
單調(diào)遞減,在
單調(diào)遞增
,當(dāng)![]()
,即
時(shí),
,![]()
![]()
第二問(wèn)中,
,則
設(shè)
,
則
,
單調(diào)遞增,
,
,
單調(diào)遞減,
,因?yàn)閷?duì)一切
,
恒成立,
第三問(wèn)中問(wèn)題等價(jià)于證明
,
,
由(1)可知
,
的最小值為
,當(dāng)且僅當(dāng)x=
時(shí)取得
設(shè)
,
,則
,易得![]()
。當(dāng)且僅當(dāng)x=1時(shí)取得.從而對(duì)一切
,都有
成立
解:(1)
當(dāng)
時(shí),
在
單調(diào)遞減,在
單調(diào)遞增
,當(dāng)![]()
,即
時(shí),
,![]()
…………4分
(2)
,則
設(shè)
,
則
,
單調(diào)遞增,
,
,
單調(diào)遞減,
,因?yàn)閷?duì)一切
,
恒成立,
…………9分
(3)問(wèn)題等價(jià)于證明
,
,
由(1)可知
,
的最小值為
,當(dāng)且僅當(dāng)x=
時(shí)取得
設(shè)
,
,則
,易得![]()
。當(dāng)且僅當(dāng)x=1時(shí)取得.從而對(duì)一切
,都有
成立
已知函數(shù)
,
(1)求函數(shù)
的定義域;
(2)求函數(shù)
在區(qū)間
上的最小值;
(3)已知
,命題p:關(guān)于x的不等式
對(duì)函數(shù)
的定義域上的任意
恒成立;命題q:指數(shù)函數(shù)
是增函數(shù).若“p或q”為真,“p且q”為假,求實(shí)數(shù)m的取值范圍.
【解析】第一問(wèn)中,利用由
即![]()
![]()
第二問(wèn)中,
,
得:
![]()
,
![]()
第三問(wèn)中,由在函數(shù)
的定義域上
的任意
,
,當(dāng)且僅當(dāng)
時(shí)等號(hào)成立。當(dāng)命題p為真時(shí),
;而命題q為真時(shí):指數(shù)函數(shù)
.因?yàn)椤皃或q”為真,“p且q”為假,所以
當(dāng)命題p為真,命題q為假時(shí);當(dāng)命題p為假,命題q為真時(shí)分為兩種情況討論即可 。
解:(1)由
即![]()
![]()
(2)
,
得:
![]()
,
![]()
(3)由在函數(shù)
的定義域上
的任意
,
,當(dāng)且僅當(dāng)
時(shí)等號(hào)成立。當(dāng)命題p為真時(shí),
;而命題q為真時(shí):指數(shù)函數(shù)
.因?yàn)椤皃或q”為真,“p且q”為假,所以
當(dāng)命題p為真,命題q為假時(shí),![]()
當(dāng)命題p為假,命題q為真時(shí),
,
所以![]()
已知點(diǎn)
(
),過(guò)點(diǎn)
作拋物線
的切線,切點(diǎn)分別為
、
(其中
).
(Ⅰ)若
,求
與
的值;
(Ⅱ)在(Ⅰ)的條件下,若以點(diǎn)
為圓心的圓
與直線
相切,求圓
的方程;
(Ⅲ)若直線
的方程是
,且以點(diǎn)
為圓心的圓
與直線
相切,
求圓
面積的最小值.
【解析】本試題主要考查了拋物線的的方程以及性質(zhì)的運(yùn)用。直線與圓的位置關(guān)系的運(yùn)用。
中∵直線
與曲線
相切,且過(guò)點(diǎn)
,∴
,利用求根公式得到結(jié)論先求直線
的方程,再利用點(diǎn)P到直線的距離為半徑,從而得到圓的方程。
(3)∵直線
的方程是
,
,且以點(diǎn)
為圓心的圓
與直線
相切∴點(diǎn)
到直線
的距離即為圓
的半徑,即
,借助于函數(shù)的性質(zhì)圓
面積的最小值![]()
(Ⅰ)由
可得,
. ------1分
∵直線
與曲線
相切,且過(guò)點(diǎn)
,∴
,即
,
∴
,或
, --------------------3分
同理可得:
,或
----------------4分
∵
,∴
,
. -----------------5分
(Ⅱ)由(Ⅰ)知,
,
,則
的斜率
,
∴直線
的方程為:
,又
,
∴
,即
. -----------------7分
∵點(diǎn)
到直線
的距離即為圓
的半徑,即
,--------------8分
故圓
的面積為
. --------------------9分
(Ⅲ)∵直線
的方程是
,
,且以點(diǎn)
為圓心的圓
與直線
相切∴點(diǎn)
到直線
的距離即為圓
的半徑,即
, ………10分
∴![]()
,
當(dāng)且僅當(dāng)
,即
,
時(shí)取等號(hào).
故圓
面積的最小值
.
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com