題目列表(包括答案和解析)
已知
,函數![]()
(1)當
時,求函數
在點(1,
)的切線方程;
(2)求函數
在[-1,1]的極值;
(3)若在
上至少存在一個實數x0,使
>g(xo)成立,求正實數
的取值范圍。
【解析】本試題中導數在研究函數中的運用。(1)中
,那么當
時,
又
所以函數
在點(1,
)的切線方程為
;(2)中令
有 ![]()
![]()
對a分類討論
,和
得到極值。(3)中,設
,
,依題意,只需
那么可以解得。
解:(Ⅰ)∵
∴ ![]()
∴ 當
時,
又
∴ 函數
在點(1,
)的切線方程為
--------4分
(Ⅱ)令
有 ![]()
![]()
①
當
即
時
|
|
(-1,0) |
0 |
(0, |
|
( |
|
|
+ |
0 |
- |
0 |
+ |
|
|
|
極大值 |
|
極小值 |
|
故
的極大值是
,極小值是![]()
②
當
即
時,
在(-1,0)上遞增,在(0,1)上遞減,則
的極大值為
,無極小值。
綜上所述
時,極大值為
,無極小值
時 極大值是
,極小值是
----------8分
(Ⅲ)設
,![]()
對
求導,得![]()
∵
,
![]()
∴
在區間
上為增函數,則![]()
依題意,只需
,即
解得
或
(舍去)
則正實數
的取值范圍是(![]()
,
)
已知函數
,
(Ⅰ)求函數
的單調遞減區間;
(Ⅱ)令函數
(
),求函數
的最大值的表達式
;
【解析】第一問中利用令
,
,
∴
,![]()
第二問中,
=![]()
=![]()
=
令
,
,則
借助于二次函數分類討論得到最值。
(Ⅰ)解:令
,
,
∴
,![]()
∴
的單調遞減區間為:![]()
…………………4分
(Ⅱ)解:
=![]()
=![]()
=![]()
令
,
,則
……………………4分
對稱軸![]()
① 當
即
時,
=
……………1分
② 當
即
時,
=
……………1分
③ 當
即
時,
……………1分
綜上:![]()
已知
中,內角
的對邊的邊長分別為
,且![]()
(I)求角
的大小;
(II)若
求
的最小值.
【解析】第一問,由正弦定理可得:sinBcosC=2sinAcosB-sinCcosB,即sin(B+C)=2sinAcosB,![]()
第二問,![]()
三角函數的性質運用。
解:(Ⅰ)由正弦定理可得:sinBcosC=2sinAcosB-sinCcosB,即sin(B+C)=2sinAcosB,
(Ⅱ)由(Ⅰ)可知
,
,則當
,即
時,y的最小值為
.
已知函數
(其中
)的圖象與x軸的交點中,相鄰兩個交點之間的距離為
,且圖象上一個最低點為
.
(1)求
的解析式; (2)當
,求
的值域.
【解析】第一問利用三角函數的性質得到)由最低點為
得A=2. 由x軸上相鄰的兩個交點之間的距離為
得
=
,即
,
由點
在圖像上的![]()
![]()
第二問中,![]()
![]()
當
=
,即
時,
取得最大值2;當![]()
即
時,
取得最小值-1,故
的值域為[-1,2]
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com