日本成人片在线_久久免费精品视频_国产午夜精品久久久久久免费视_校花撩起jk露出白色内裤国产精品_av影片免费在线观看_国产小视频在线看_最新av免费在线观看_99久久99久久精品国产片_欧美成人猛片aaaaaaa_蜜桃免费网站一区二区三区

11.如圖9所示.一對正.負電荷.質量.電量均相同.現使他們以相同速度沿與軸成30º角.垂直磁場方向射入第一象限的勻強磁場中.則正.負電荷到坐標軸的時間比為 . 查看更多

 

題目列表(包括答案和解析)

1932年,著名的英國物理學家狄拉克,從理論上預言磁單極子是可以獨立存在的。他認為:“既然電有基本電荷——電子存在,磁也應該有基本磁荷——磁單極子存在。”在209年9月3日出版的《科學》雜志上刊登的論文——德國亥姆霍茲聯合會研究中心的研究人員在德國德累斯頓大學、圣安德魯斯大學、拉普拉塔大學及英國牛津大學同事的協作下,首次觀測到了磁單極子的存在,以及這些磁單極子在一種實際材料中出現的過程。假設在真空玻璃盒內有一固定于地面上空附近的S極磁單極子,其磁場分布與負點電荷電場分布相似,如圖所示。一質量為m、電荷量為q的點電荷P在磁單極子的正上方h高處的水平面內做半徑r的勻速圓周運動。下列對電荷P的分析正確的是(已知地球表面的重力加速度為g)                                                                                  (    )

       A.該電荷一定帶負荷

       B.該電荷一定帶正電荷

       C.可確定電荷運動的速度v

       D.可確定電荷運動圓周上各處的磁感應強度B

 
 


查看答案和解析>>

如圖所示,絕緣輕桿長L=0.9 m,兩端分別固定著帶等量異種電荷的小球A、B,質量分別為mA=4×10-2 kg,mB=8×10-2 kg,A球帶正電,B球帶負電,電荷量q=6.0×10-6 C.輕桿可繞過O點的光滑水平軸轉動,OB=2OA.一根豎直細線系于桿上OB中點D使桿保持水平,整個裝置處在水平向右的勻強電場中,電場強度E=5×104 N/C.不計一切阻力,取g=10 m/s2,求:

(1)細線對桿的拉力大小;

(2)若將細線燒斷,當輕桿轉過90°時,A、B兩小球電勢能總的變化量;

(3)細線燒斷后,在桿轉動過程中小球A的最大速度.

查看答案和解析>>

如圖6-1-25所示,有三根長度均為L=0.3 m的不可伸長的絕緣細線,其中兩根的一端分別固定在天花板上的PQ點,另一端分別拴有質量均為m=0.12 kg的帶電小球AB,其中A球帶正電,電荷量為q=3×106 C,B球帶負電,與A球帶電荷量相同.AB之間用第三根線連接起來.在水平向左的勻強電場作用下,AB保持靜止,懸線仍處于豎直方向,且AB間細線恰好伸直.(靜電力常量k=9×109 N·m2/C2)

(1)求此勻強電場的電場強度E的大小.

(2)現將PA之間的線燒斷,由于有空氣阻力,AB球最后會達到新的平衡位置.求此時細線QB所受的拉力T的大小,并求出AB間細線與豎直方向的夾角θ.

(3)求A球的電勢能與燒斷前相比改變了多少(不計B球所帶電荷對勻強電場的影響).

查看答案和解析>>

第八部分 靜電場

第一講 基本知識介紹

在奧賽考綱中,靜電學知識點數目不算多,總數和高考考綱基本相同,但在個別知識點上,奧賽的要求顯然更加深化了:如非勻強電場中電勢的計算、電容器的連接和靜電能計算、電介質的極化等。在處理物理問題的方法上,對無限分割和疊加原理提出了更高的要求。

如果把靜電場的問題分為兩部分,那就是電場本身的問題、和對場中帶電體的研究,高考考綱比較注重第二部分中帶電粒子的運動問題,而奧賽考綱更注重第一部分和第二部分中的靜態問題。也就是說,奧賽關注的是電場中更本質的內容,關注的是縱向的深化和而非橫向的綜合。

一、電場強度

1、實驗定律

a、庫侖定律

內容;

條件:⑴點電荷,⑵真空,⑶點電荷靜止或相對靜止。事實上,條件⑴和⑵均不能視為對庫侖定律的限制,因為疊加原理可以將點電荷之間的靜電力應用到一般帶電體,非真空介質可以通過介電常數將k進行修正(如果介質分布是均勻和“充分寬廣”的,一般認為k′= k /εr)。只有條件⑶,它才是靜電學的基本前提和出發點(但這一點又是常常被忽視和被不恰當地“綜合應用”的)。

b、電荷守恒定律

c、疊加原理

2、電場強度

a、電場強度的定義

電場的概念;試探電荷(檢驗電荷);定義意味著一種適用于任何電場的對電場的檢測手段;電場線是抽象而直觀地描述電場有效工具(電場線的基本屬性)。

b、不同電場中場強的計算

決定電場強弱的因素有兩個:場源(帶電量和帶電體的形狀)和空間位置。這可以從不同電場的場強決定式看出——

⑴點電荷:E = k

結合點電荷的場強和疊加原理,我們可以求出任何電場的場強,如——

⑵均勻帶電環,垂直環面軸線上的某點P:E = ,其中r和R的意義見圖7-1。

⑶均勻帶電球殼

內部:E = 0

外部:E = k ,其中r指考察點到球心的距離

如果球殼是有厚度的的(內徑R1 、外徑R2),在殼體中(R1<r<R2):

E =  ,其中ρ為電荷體密度。這個式子的物理意義可以參照萬有引力定律當中(條件部分)的“剝皮法則”理解〔即為圖7-2中虛線以內部分的總電量…〕。

⑷無限長均勻帶電直線(電荷線密度為λ):E = 

⑸無限大均勻帶電平面(電荷面密度為σ):E = 2πkσ

二、電勢

1、電勢:把一電荷從P點移到參考點P0時電場力所做的功W與該電荷電量q的比值,即

U = 

參考點即電勢為零的點,通常取無窮遠或大地為參考點。

和場強一樣,電勢是屬于場本身的物理量。W則為電荷的電勢能。

2、典型電場的電勢

a、點電荷

以無窮遠為參考點,U = k

b、均勻帶電球殼

以無窮遠為參考點,U = k ,U = k

3、電勢的疊加

由于電勢的是標量,所以電勢的疊加服從代數加法。很顯然,有了點電荷電勢的表達式和疊加原理,我們可以求出任何電場的電勢分布。

4、電場力對電荷做功

WAB = q(UA - UB)= qUAB 

三、靜電場中的導體

靜電感應→靜電平衡(狹義和廣義)→靜電屏蔽

1、靜電平衡的特征可以總結為以下三層含義——

a、導體內部的合場強為零;表面的合場強不為零且一般各處不等,表面的合場強方向總是垂直導體表面。

b、導體是等勢體,表面是等勢面。

c、導體內部沒有凈電荷;孤立導體的凈電荷在表面的分布情況取決于導體表面的曲率。

2、靜電屏蔽

導體殼(網罩)不接地時,可以實現外部對內部的屏蔽,但不能實現內部對外部的屏蔽;導體殼(網罩)接地后,既可實現外部對內部的屏蔽,也可實現內部對外部的屏蔽。

四、電容

1、電容器

孤立導體電容器→一般電容器

2、電容

a、定義式 C = 

b、決定式。決定電容器電容的因素是:導體的形狀和位置關系、絕緣介質的種類,所以不同電容器有不同的電容

⑴平行板電容器 C =  =  ,其中ε為絕對介電常數(真空中ε0 =  ,其它介質中ε= ),εr則為相對介電常數,εr =  

⑵柱形電容器:C = 

⑶球形電容器:C = 

3、電容器的連接

a、串聯  = +++ … +

b、并聯 C = C1 + C2 + C3 + … + Cn 

4、電容器的能量

用圖7-3表征電容器的充電過程,“搬運”電荷做功W就是圖中陰影的面積,這也就是電容器的儲能E ,所以

E = q0U0 = C = 

電場的能量。電容器儲存的能量究竟是屬于電荷還是屬于電場?正確答案是后者,因此,我們可以將電容器的能量用場強E表示。

對平行板電容器 E = E2 

認為電場能均勻分布在電場中,則單位體積的電場儲能 w = E2 。而且,這以結論適用于非勻強電場。

五、電介質的極化

1、電介質的極化

a、電介質分為兩類:無極分子和有極分子,前者是指在沒有外電場時每個分子的正、負電荷“重心”彼此重合(如氣態的H2 、O2 、N2和CO2),后者則反之(如氣態的H2O 、SO2和液態的水硝基笨)

b、電介質的極化:當介質中存在外電場時,無極分子會變為有極分子,有極分子會由原來的雜亂排列變成規則排列,如圖7-4所示。

2、束縛電荷、自由電荷、極化電荷與宏觀過剩電荷

a、束縛電荷與自由電荷:在圖7-4中,電介質左右兩端分別顯現負電和正電,但這些電荷并不能自由移動,因此稱為束縛電荷,除了電介質,導體中的原子核和內層電子也是束縛電荷;反之,能夠自由移動的電荷稱為自由電荷。事實上,導體中存在束縛電荷與自由電荷,絕緣體中也存在束縛電荷和自由電荷,只是它們的比例差異較大而已。

b、極化電荷是更嚴格意義上的束縛電荷,就是指圖7-4中電介質兩端顯現的電荷。而宏觀過剩電荷是相對極化電荷來說的,它是指可以自由移動的凈電荷。宏觀過剩電荷與極化電荷的重要區別是:前者能夠用來沖放電,也能用儀表測量,但后者卻不能。

第二講 重要模型與專題

一、場強和電場力

【物理情形1】試證明:均勻帶電球殼內部任意一點的場強均為零。

【模型分析】這是一個疊加原理應用的基本事例。

如圖7-5所示,在球殼內取一點P ,以P為頂點做兩個對頂的、頂角很小的錐體,錐體與球面相交得到球面上的兩個面元ΔS1和ΔS2 ,設球面的電荷面密度為σ,則這兩個面元在P點激發的場強分別為

ΔE1 = k

ΔE2 = k

為了弄清ΔE1和ΔE2的大小關系,引進錐體頂部的立體角ΔΩ ,顯然

 = ΔΩ = 

所以 ΔE1 = k ,ΔE2 = k ,即:ΔE1 = ΔE2 ,而它們的方向是相反的,故在P點激發的合場強為零。

同理,其它各個相對的面元ΔS3和ΔS4 、ΔS5和ΔS6  激發的合場強均為零。原命題得證。

【模型變換】半徑為R的均勻帶電球面,電荷的面密度為σ,試求球心處的電場強度。

【解析】如圖7-6所示,在球面上的P處取一極小的面元ΔS ,它在球心O點激發的場強大小為

ΔE = k ,方向由P指向O點。

無窮多個這樣的面元激發的場強大小和ΔS激發的完全相同,但方向各不相同,它們矢量合成的效果怎樣呢?這里我們要大膽地預見——由于由于在x方向、y方向上的對稱性,Σ = Σ = 0 ,最后的ΣE = ΣEz ,所以先求

ΔEz = ΔEcosθ= k ,而且ΔScosθ為面元在xoy平面的投影,設為ΔS′

所以 ΣEz = ΣΔS′

 ΣΔS′= πR2 

【答案】E = kπσ ,方向垂直邊界線所在的平面。

〖學員思考〗如果這個半球面在yoz平面的兩邊均勻帶有異種電荷,面密度仍為σ,那么,球心處的場強又是多少?

〖推薦解法〗將半球面看成4個球面,每個球面在x、y、z三個方向上分量均為 kπσ,能夠對稱抵消的將是y、z兩個方向上的分量,因此ΣE = ΣEx …

〖答案〗大小為kπσ,方向沿x軸方向(由帶正電的一方指向帶負電的一方)。

【物理情形2】有一個均勻的帶電球體,球心在O點,半徑為R ,電荷體密度為ρ ,球體內有一個球形空腔,空腔球心在O′點,半徑為R′,= a ,如圖7-7所示,試求空腔中各點的場強。

【模型分析】這里涉及兩個知識的應用:一是均勻帶電球體的場強定式(它也是來自疊加原理,這里具體用到的是球體內部的結論,即“剝皮法則”),二是填補法。

將球體和空腔看成完整的帶正電的大球和帶負電(電荷體密度相等)的小球的集合,對于空腔中任意一點P ,設 = r1 , = r2 ,則大球激發的場強為

E1 = k = kρπr1 ,方向由O指向P

“小球”激發的場強為

E2 = k = kρπr2 ,方向由P指向O′

E1和E2的矢量合成遵從平行四邊形法則,ΣE的方向如圖。又由于矢量三角形PE1ΣE和空間位置三角形OP O′是相似的,ΣE的大小和方向就不難確定了。

【答案】恒為kρπa ,方向均沿O → O′,空腔里的電場是勻強電場。

〖學員思考〗如果在模型2中的OO′連線上O′一側距離O為b(b>R)的地方放一個電量為q的點電荷,它受到的電場力將為多大?

〖解說〗上面解法的按部就班應用…

〖答〗πkρq〔?〕。

二、電勢、電量與電場力的功

【物理情形1】如圖7-8所示,半徑為R的圓環均勻帶電,電荷線密度為λ,圓心在O點,過圓心跟環面垂直的軸線上有P點, = r ,以無窮遠為參考點,試求P點的電勢U

【模型分析】這是一個電勢標量疊加的簡單模型。先在圓環上取一個元段ΔL ,它在P點形成的電勢

ΔU = k

環共有段,各段在P點形成的電勢相同,而且它們是標量疊加。

【答案】UP = 

〖思考〗如果上題中知道的是環的總電量Q ,則UP的結論為多少?如果這個總電量的分布不是均勻的,結論會改變嗎?

〖答〗UP =  ;結論不會改變。

〖再思考〗將環換成半徑為R的薄球殼,總電量仍為Q ,試問:(1)當電量均勻分布時,球心電勢為多少?球內(包括表面)各點電勢為多少?(2)當電量不均勻分布時,球心電勢為多少?球內(包括表面)各點電勢為多少?

〖解說〗(1)球心電勢的求解從略;

球內任一點的求解參看圖7-5

ΔU1 = k= k·= kσΔΩ

ΔU2 = kσΔΩ

它們代數疊加成 ΔU = ΔU1 + ΔU2 = kσΔΩ

而 r1 + r2 = 2Rcosα

所以 ΔU = 2RkσΔΩ

所有面元形成電勢的疊加 ΣU = 2RkσΣΔΩ

注意:一個完整球面的ΣΔΩ = 4π(單位:球面度sr),但作為對頂的錐角,ΣΔΩ只能是2π ,所以——

ΣU = 4πRkσ= k

(2)球心電勢的求解和〖思考〗相同;

球內任一點的電勢求解可以從(1)問的求解過程得到結論的反證。

〖答〗(1)球心、球內任一點的電勢均為k ;(2)球心電勢仍為k ,但其它各點的電勢將隨電量的分布情況的不同而不同(內部不再是等勢體,球面不再是等勢面)。

【相關應用】如圖7-9所示,球形導體空腔內、外壁的半徑分別為R1和R2 ,帶有凈電量+q ,現在其內部距球心為r的地方放一個電量為+Q的點電荷,試求球心處的電勢。

【解析】由于靜電感應,球殼的內、外壁形成兩個帶電球殼。球心電勢是兩個球殼形成電勢、點電荷形成電勢的合效果。

根據靜電感應的嘗試,內壁的電荷量為-Q ,外壁的電荷量為+Q+q ,雖然內壁的帶電是不均勻的,根據上面的結論,其在球心形成的電勢仍可以應用定式,所以…

【答案】Uo = k - k + k 

〖反饋練習〗如圖7-10所示,兩個極薄的同心導體球殼A和B,半徑分別為RA和RB ,現讓A殼接地,而在B殼的外部距球心d的地方放一個電量為+q的點電荷。試求:(1)A球殼的感應電荷量;(2)外球殼的電勢。

〖解說〗這是一個更為復雜的靜電感應情形,B殼將形成圖示的感應電荷分布(但沒有凈電量),A殼的情形未畫出(有凈電量),它們的感應電荷分布都是不均勻的。

此外,我們還要用到一個重要的常識:接地導體(A殼)的電勢為零。但值得注意的是,這里的“為零”是一個合效果,它是點電荷q 、A殼、B殼(帶同樣電荷時)單獨存在時在A中形成的的電勢的代數和,所以,當我們以球心O點為對象,有

UO = k + k + k = 0

QB應指B球殼上的凈電荷量,故 QB = 0

所以 QA = -q

☆學員討論:A殼的各處電勢均為零,我們的方程能不能針對A殼表面上的某點去列?(答:不能,非均勻帶電球殼的球心以外的點不能應用定式!)

基于剛才的討論,求B的電勢時也只能求B的球心的電勢(獨立的B殼是等勢體,球心電勢即為所求)——

UB = k + k

〖答〗(1)QA = -q ;(2)UB = k(1-) 。

【物理情形2】圖7-11中,三根實線表示三根首尾相連的等長絕緣細棒,每根棒上的電荷分布情況與絕緣棒都換成導體棒時完全相同。點A是Δabc的中心,點B則與A相對bc棒對稱,且已測得它們的電勢分別為UA和UB 。試問:若將ab棒取走,A、B兩點的電勢將變為多少?

【模型分析】由于細棒上的電荷分布既不均勻、三根細棒也沒有構成環形,故前面的定式不能直接應用。若用元段分割→疊加,也具有相當的困難。所以這里介紹另一種求電勢的方法。

每根細棒的電荷分布雖然復雜,但相對各自的中點必然是對稱的,而且三根棒的總電量、分布情況彼此必然相同。這就意味著:①三棒對A點的電勢貢獻都相同(可設為U1);②ab棒、ac棒對B點的電勢貢獻相同(可設為U2);③bc棒對A、B兩點的貢獻相同(為U1)。

所以,取走ab前  3U1 = UA

                 2U2 + U1 = UB

取走ab后,因三棒是絕緣體,電荷分布不變,故電勢貢獻不變,所以

  UA′= 2U1

                 UB′= U1 + U2

【答案】UA′= UA ;UB′= UA + UB 

〖模型變換〗正四面體盒子由彼此絕緣的四塊導體板構成,各導體板帶電且電勢分別為U1 、U2 、U3和U4 ,則盒子中心點O的電勢U等于多少?

〖解說〗此處的四塊板子雖然位置相對O點具有對稱性,但電量各不相同,因此對O點的電勢貢獻也不相同,所以應該想一點辦法——

我們用“填補法”將電量不對稱的情形加以改觀:先將每一塊導體板復制三塊,作成一個正四面體盒子,然后將這四個盒子位置重合地放置——構成一個有四層壁的新盒子。在這個新盒子中,每個壁的電量將是完全相同的(為原來四塊板的電量之和)、電勢也完全相同(為U1 + U2 + U3 + U4),新盒子表面就構成了一個等勢面、整個盒子也是一個等勢體,故新盒子的中心電勢為

U′= U1 + U2 + U3 + U4 

最后回到原來的單層盒子,中心電勢必為 U =  U′

〖答〗U = (U1 + U2 + U3 + U4)。

☆學員討論:剛才的這種解題思想是否適用于“物理情形2”?(答:不行,因為三角形各邊上電勢雖然相等,但中點的電勢和邊上的并不相等。)

〖反饋練習〗電荷q均勻分布在半球面ACB上,球面半徑為R ,CD為通過半球頂點C和球心O的軸線,如圖7-12所示。P、Q為CD軸線上相對O點對稱的兩點,已知P點的電勢為UP ,試求Q點的電勢UQ 。

〖解說〗這又是一個填補法的應用。將半球面補成完整球面,并令右邊內、外層均勻地帶上電量為q的電荷,如圖7-12所示。

從電量的角度看,右半球面可以看作不存在,故這時P、Q的電勢不會有任何改變。

而換一個角度看,P、Q的電勢可以看成是兩者的疊加:①帶電量為2q的完整球面;②帶電量為-q的半球面。

考查P點,UP = k + U半球面

其中 U半球面顯然和為填補時Q點的電勢大小相等、符號相反,即 U半球面= -UQ 

以上的兩個關系已經足以解題了。

〖答〗UQ = k - UP 。

【物理情形3】如圖7-13所示,A、B兩點相距2L ,圓弧是以B為圓心、L為半徑的半圓。A處放有電量為q的電荷,B處放有電量為-q的點電荷。試問:(1)將單位正電荷從O點沿移到D點,電場力對它做了多少功?(2)將單位負電荷從D點沿AB的延長線移到無窮遠處去,電場力對它做多少功?

【模型分析】電勢疊加和關系WAB = q(UA - UB)= qUAB的基本應用。

UO = k + k = 0

UD = k + k = -

U = 0

再用功與電勢的關系即可。

【答案】(1);(2) 

【相關應用】在不計重力空間,有A、B兩個帶電小球,電量分別為q1和q2 ,質量分別為m1和m2 ,被固定在相距L的兩點。試問:(1)若解除A球的固定,它能獲得的最大動能是多少?(2)若同時解除兩球的固定,它們各自的獲得的最大動能是多少?(3)未解除固定時,這個系統的靜電勢能是多少?

【解說】第(1)問甚間;第(2)問在能量方面類比反沖裝置的能量計算,另啟用動量守恒關系;第(3)問是在前兩問基礎上得出的必然結論…(這里就回到了一個基本的觀念斧正:勢能是屬于場和場中物體的系統,而非單純屬于場中物體——這在過去一直是被忽視的。在兩個點電荷的環境中,我們通常說“兩個點電荷的勢能”是多少。)

【答】(1)k;(2)Ek1 = k ,Ek2 = k;(3)k 

〖思考〗設三個點電荷的電量分別為q1 、q2和q3 ,兩兩相距為r12 、r23和r31 ,則這個點電荷系統的靜電勢能是多少?

〖解〗略。

〖答〗k(++)。

〖反饋應用〗如圖7-14所示,三個帶同種電荷的相同金屬小球,每個球的質量均為m 、電量均為q ,用長度為L的三根絕緣輕繩連接著,系統放在光滑、絕緣的水平面上。現將其中的一根繩子剪斷,三個球將開始運動起來,試求中間這個小球的最大速度。

〖解〗設剪斷的是1、3之間的繩子,動力學分析易知,2球獲得最大動能時,1、2之間的繩子與2、3之間的繩子剛好應該在一條直線上。而且由動量守恒知,三球不可能有沿繩子方向的速度。設2球的速度為v ,1球和3球的速度為v′,則

動量關系 mv + 2m v′= 0

能量關系 3k = 2 k + k + mv2 + 2m

解以上兩式即可的v值。

〖答〗v = q 

三、電場中的導體和電介質

【物理情形】兩塊平行放置的很大的金屬薄板A和B,面積都是S ,間距為d(d遠小于金屬板的線度),已知A板帶凈電量+Q1 ,B板帶盡電量+Q2 ,且Q2<Q1 ,試求:(1)兩板內外表面的電量分別是多少;(2)空間各處的場強;(3)兩板間的電勢差。

【模型分析】由于靜電感應,A、B兩板的四個平面的電量將呈現一定規律的分布(金屬板雖然很薄,但內部合場強為零的結論還是存在的);這里應注意金屬板“很大”的前提條件,它事實上是指物理無窮大,因此,可以應用無限大平板的場強定式。

為方便解題,做圖7-15,忽略邊緣效應,四個面的電荷分布應是均勻的,設四個面的電荷面密度分別為σ1 、σ2 、σ3和σ4 ,顯然

(σ1 + σ2)S = Q1 

(σ3 + σ4)S = Q2 

A板內部空間場強為零,有 2πk(σ1 ? σ2 ? σ3 ? σ4)= 0

A板內部空間場強為零,有 2πk(σ1 + σ2 + σ3 ? σ4)= 0

解以上四式易得 σ1 = σ4 = 

               σ2 = ?σ3 = 

有了四個面的電荷密度,Ⅰ、Ⅱ、Ⅲ空間的場強就好求了〔如E =2πk(σ1 + σ2 ? σ3 ? σ4)= 2πk〕。

最后,UAB = Ed

【答案】(1)A板外側電量、A板內側電量,B板內側電量?、B板外側電量;(2)A板外側空間場強2πk,方向垂直A板向外,A、B板之間空間場強2πk,方向由A垂直指向B,B板外側空間場強2πk,方向垂直B板向外;(3)A、B兩板的電勢差為2πkd,A板電勢高。

〖學員思考〗如果兩板帶等量異號的凈電荷,兩板的外側空間場強等于多少?(答:為零。)

〖學員討論〗(原模型中)作為一個電容器,它的“電量”是多少(答:)?如果在板間充滿相對介電常數為εr的電介質,是否會影響四個面的電荷分布(答:不會)?是否會影響三個空間的場強(答:只會影響Ⅱ空間的場強)?

〖學員討論〗(原模型中)我們是否可以求出A、B兩板之間的靜電力?〔答:可以;以A為對象,外側受力·(方向相左),內側受力·(方向向右),它們合成即可,結論為F = Q1Q2 ,排斥力。〕

【模型變換】如圖7-16所示,一平行板電容器,極板面積為S ,其上半部為真空,而下半部充滿相對介電常數為εr的均勻電介質,當兩極板分別帶上+Q和?Q的電量后,試求:(1)板上自由電荷的分布;(2)兩板之間的場強;(3)介質表面的極化電荷。

【解說】電介質的充入雖然不能改變內表面的電量總數,但由于改變了場強,故對電荷的分布情況肯定有影響。設真空部分電量為Q1 ,介質部分電量為Q2 ,顯然有

Q1 + Q2 = Q

兩板分別為等勢體,將電容器看成上下兩個電容器的并聯,必有

U1 = U2   =  ,即  = 

解以上兩式即可得Q1和Q2 

場強可以根據E = 關系求解,比較常規(上下部分的場強相等)。

上下部分的電量是不等的,但場強居然相等,這怎么解釋?從公式的角度看,E = 2πkσ(單面平板),當k 、σ同時改變,可以保持E不變,但這是一種結論所展示的表象。從內在的角度看,k的改變正是由于極化電荷的出現所致,也就是說,極化電荷的存在相當于在真空中形成了一個新的電場,正是這個電場與自由電荷(在真空中)形成的電場疊加成為E2 ,所以

E2 = 4πk(σ ? σ′)= 4πk( ? 

請注意:①這里的σ′和Q′是指極化電荷的面密度和總量;② E = 4πkσ的關系是由兩個帶電面疊加的合效果。

【答案】(1)真空部分的電量為Q ,介質部分的電量為Q ;(2)整個空間的場強均為 ;(3)Q 。

〖思考應用〗一個帶電量為Q的金屬小球,周圍充滿相對介電常數為εr的均勻電介質,試求與與導體表面接觸的介質表面的極化電荷量。

〖解〗略。

〖答〗Q′= Q 。

四、電容器的相關計算

【物理情形1】由許多個電容為C的電容器組成一個如圖7-17所示的多級網絡,試問:(1)在最后一級的右邊并聯一個多大電容C′,可使整個網絡的A、B兩端電容也為C′?(2)不接C′,但無限地增加網絡的級數,整個網絡A、B兩端的總電容是多少?

【模型分析】這是一個練習電容電路簡化基本事例。

第(1)問中,未給出具體級數,一般結論應適用特殊情形:令級數為1 ,于是

 +  =  解C′即可。

第(2)問中,因為“無限”,所以“無限加一級后仍為無限”,不難得出方程

 +  = 

【答案】(1)C ;(2)C 。

【相關模型】在圖7-18所示的電路中,已知C1 = C2 = C3 = C9 = 1μF ,C4 = C5 = C6 = C7 = 2μF ,C8 = C10 = 3μF ,試求A、B之間的等效電容。

【解說】對于既非串聯也非并聯的電路,需要用到一種“Δ→Y型變換”,參見圖7-19,根據三個端點之間的電容等效,容易得出定式——

Δ→Y型:Ca = 

          Cb = 

          Cc = 

Y→Δ型:C1 = 

         C2 = 

         C3 = 

有了這樣的定式后,我們便可以進行如圖7-20所示的四步電路簡化(為了方便,電容不宜引進新的符號表達,而是直接將變換后的量值標示在圖中)——

【答】約2.23μF 。

【物理情形2】如圖7-21所示的電路中,三個電容器完全相同,電源電動勢ε1 = 3.0V ,ε2 = 4.5V,開關K1和K2接通前電容器均未帶電,試求K1和K2接通后三個電容器的電壓Uao 、Ubo和Uco各為多少。

【解說】這是一個考查電容器電路的基本習題,解題的關鍵是要抓與o相連的三塊極板(俗稱“孤島”)的總電量為零。

電量關系:++= 0

電勢關系:ε1 = Uao + Uob = Uao ? Ubo 

          ε2 = Ubo + Uoc = Ubo ? Uco 

解以上三式即可。

【答】Uao = 3.5V ,Ubo = 0.5V ,Uco = ?4.0V 。

【伸展應用】如圖7-22所示,由n個單元組成的電容器網絡,每一個單元由三個電容器連接而成,其中有兩個的電容為3C ,另一個的電容為3C 。以a、b為網絡的輸入端,a′、b′為輸出端,今在a、b間加一個恒定電壓U ,而在a′b′間接一個電容為C的電容器,試求:(1)從第k單元輸入端算起,后面所有電容器儲存的總電能;(2)若把第一單元輸出端與后面斷開,再除去電源,并把它的輸入端短路,則這個單元的三個電容器儲存的總電能是多少?

【解說】這是一個結合網絡計算和“孤島現象”的典型事例。

(1)類似“物理情形1”的計算,可得 C = Ck = C

所以,從輸入端算起,第k單元后的電壓的經驗公式為 Uk = 

再算能量儲存就不難了。

(2)斷開前,可以算出第一單元的三個電容器、以及后面“系統”的電量分配如圖7-23中的左圖所示。這時,C1的右板和C2的左板(或C2的下板和C3的右板)形成“孤島”。此后,電容器的相互充電過程(C3類比為“電源”)滿足——

電量關系:Q1′= Q3

          Q2′+ Q3′= 

電勢關系: = 

從以上三式解得 Q1′= Q3′=  ,Q2′=  ,這樣系統的儲能就可以用得出了。

【答】(1)Ek = ;(2) 。

〖學員思考〗圖7-23展示的過程中,始末狀態的電容器儲能是否一樣?(答:不一樣;在相互充電的過程中,導線消耗的焦耳熱已不可忽略。)

☆第七部分完☆

查看答案和解析>>

第九部分 穩恒電流

第一講 基本知識介紹

第八部分《穩恒電流》包括兩大塊:一是“恒定電流”,二是“物質的導電性”。前者是對于電路的外部計算,后者則是深入微觀空間,去解釋電流的成因和比較不同種類的物質導電的情形有什么區別。

應該說,第一塊的知識和高考考綱對應得比較好,深化的部分是對復雜電路的計算(引入了一些新的處理手段)。第二塊雖是全新的內容,但近幾年的考試已經很少涉及,以至于很多奧賽培訓資料都把它刪掉了。鑒于在奧賽考綱中這部分內容還保留著,我們還是想粗略地介紹一下。

一、歐姆定律

1、電阻定律

a、電阻定律 R = ρ

b、金屬的電阻率 ρ = ρ0(1 + αt)

2、歐姆定律

a、外電路歐姆定律 U = IR ,順著電流方向電勢降落

b、含源電路歐姆定律

在如圖8-1所示的含源電路中,從A點到B點,遵照原則:①遇電阻,順電流方向電勢降落(逆電流方向電勢升高)②遇電源,正極到負極電勢降落,負極到正極電勢升高(與電流方向無關),可以得到以下關系

UA ? IR ? ε ? Ir = UB 

這就是含源電路歐姆定律。

c、閉合電路歐姆定律

在圖8-1中,若將A、B兩點短接,則電流方向只可能向左,含源電路歐姆定律成為

UA + IR ? ε + Ir = UB = UA

 ε = IR + Ir ,或 I = 

這就是閉合電路歐姆定律。值得注意的的是:①對于復雜電路,“干路電流I”不能做絕對的理解(任何要考察的一條路均可視為干路);②電源的概念也是相對的,它可以是多個電源的串、并聯,也可以是電源和電阻組成的系統;③外電阻R可以是多個電阻的串、并聯或混聯,但不能包含電源。

二、復雜電路的計算

1、戴維南定理:一個由獨立源、線性電阻、線性受控源組成的二端網絡,可以用一個電壓源和電阻串聯的二端網絡來等效。(事實上,也可等效為“電流源和電阻并聯的的二端網絡”——這就成了諾頓定理。)

應用方法:其等效電路的電壓源的電動勢等于網絡的開路電壓,其串聯電阻等于從端鈕看進去該網絡中所有獨立源為零值時的等效電阻。

2、基爾霍夫(克希科夫)定律

a、基爾霍夫第一定律:在任一時刻流入電路中某一分節點的電流強度的總和,等于從該點流出的電流強度的總和。

例如,在圖8-2中,針對節點P ,有

I2 + I3 = I1 

基爾霍夫第一定律也被稱為“節點電流定律”,它是電荷受恒定律在電路中的具體體現。

對于基爾霍夫第一定律的理解,近來已經拓展為:流入電路中某一“包容塊”的電流強度的總和,等于從該“包容塊”流出的電流強度的總和。

b、基爾霍夫第二定律:在電路中任取一閉合回路,并規定正的繞行方向,其中電動勢的代數和,等于各部分電阻(在交流電路中為阻抗)與電流強度乘積的代數和。

例如,在圖8-2中,針對閉合回路① ,有

ε3 ? ε2 = I3 ( r3 + R2 + r2 ) ? I2R2 

基爾霍夫第二定律事實上是含源部分電路歐姆定律的變體(☆同學們可以列方程 UP = … = UP得到和上面完全相同的式子)。

3、Y?Δ變換

在難以看清串、并聯關系的電路中,進行“Y型?Δ型”的相互轉換常常是必要的。在圖8-3所示的電路中

☆同學們可以證明Δ→ Y的結論…

Rc = 

Rb = 

Ra = 

Y→Δ的變換稍稍復雜一些,但我們仍然可以得到

R1 = 

R2 = 

R3 = 

三、電功和電功率

1、電源

使其他形式的能量轉變為電能的裝置。如發電機、電池等。發電機是將機械能轉變為電能;干電池、蓄電池是將化學能轉變為電能;光電池是將光能轉變為電能;原子電池是將原子核放射能轉變為電能;在電子設備中,有時也把變換電能形式的裝置,如整流器等,作為電源看待。

電源電動勢定義為電源的開路電壓,內阻則定義為沒有電動勢時電路通過電源所遇到的電阻。據此不難推出相同電源串聯、并聯,甚至不同電源串聯、并聯的時的電動勢和內阻的值。

例如,電動勢、內阻分別為ε1 、r1和ε2 、r2的電源并聯,構成的新電源的電動勢ε和內阻r分別為(☆師生共同推導…)

ε = 

r = 

2、電功、電功率

電流通過電路時,電場力對電荷作的功叫做電功W。單位時間內電場力所作的功叫做電功率P 。

計算時,只有W = UIt和P = UI是完全沒有條件的,對于不含源的純電阻,電功和焦耳熱重合,電功率則和熱功率重合,有W = I2Rt = t和P = I2R = 

對非純電阻電路,電功和電熱的關系依據能量守恒定律求解。 

四、物質的導電性

在不同的物質中,電荷定向移動形成電流的規律并不是完全相同的。

1、金屬中的電流

即通常所謂的不含源純電阻中的電流,規律遵從“外電路歐姆定律”。

2、液體導電

能夠導電的液體叫電解液(不包括液態金屬)。電解液中離解出的正負離子導電是液體導電的特點(如:硫酸銅分子在通常情況下是電中性的,但它在溶液里受水分子的作用就會離解成銅離子Cu2+和硫酸根離子S,它們在電場力的作用下定向移動形成電流)。

在電解液中加電場時,在兩個電極上(或電極旁)同時產生化學反應的過程叫作“電解”。電解的結果是在兩個極板上(或電極旁)生成新的物質。

液體導電遵從法拉第電解定律——

法拉第電解第一定律:電解時在電極上析出或溶解的物質的質量和電流強度、跟通電時間成正比。表達式:m = kIt = KQ (式中Q為析出質量為m的物質所需要的電量;K為電化當量,電化當量的數值隨著被析出的物質種類而不同,某種物質的電化當量在數值上等于通過1C電量時析出的該種物質的質量,其單位為kg/C。)

法拉第電解第二定律:物質的電化當量K和它的化學當量成正比。某種物質的化學當量是該物質的摩爾質量M(克原子量)和它的化合價n的比值,即 K =  ,而F為法拉第常數,對任何物質都相同,F = 9.65×104C/mol 。

將兩個定律聯立可得:m = Q 。

3、氣體導電

氣體導電是很不容易的,它的前提是氣體中必須出現可以定向移動的離子或電子。按照“載流子”出現方式的不同,可以把氣體放電分為兩大類——

a、被激放電

在地面放射性元素的輻照以及紫外線和宇宙射線等的作用下,會有少量氣體分子或原子被電離,或在有些燈管內,通電的燈絲也會發射電子,這些“載流子”均會在電場力作用下產生定向移動形成電流。這種情況下的電流一般比較微弱,且遵從歐姆定律。典型的被激放電情形有

b、自激放電

但是,當電場足夠強,電子動能足夠大,它們和中性氣體相碰撞時,可以使中性分子電離,即所謂碰撞電離。同時,在正離子向陰極運動時,由于以很大的速度撞到陰極上,還可能從陰極表面上打出電子來,這種現象稱為二次電子發射。碰撞電離和二次電子發射使氣體中在很短的時間內出現了大量的電子和正離子,電流亦迅速增大。這種現象被稱為自激放電。自激放電不遵從歐姆定律。

常見的自激放電有四大類:輝光放電、弧光放電、火花放電、電暈放電。

4、超導現象

據金屬電阻率和溫度的關系,電阻率會隨著溫度的降低和降低。當電阻率降為零時,稱為超導現象。電阻率為零時對應的溫度稱為臨界溫度。超導現象首先是荷蘭物理學家昂尼斯發現的。

超導的應用前景是顯而易見且相當廣闊的。但由于一般金屬的臨界溫度一般都非常低,故產業化的價值不大,為了解決這個矛盾,科學家們致力于尋找或合成臨界溫度比較切合實際的材料就成了當今前沿科技的一個熱門領域。當前人們的研究主要是集中在合成材料方面,臨界溫度已經超過100K,當然,這個溫度距產業化的期望值還很遠。

5、半導體

半導體的電阻率界于導體和絕緣體之間,且ρ

查看答案和解析>>


同步練習冊答案
国模无码一区二区三区| 成人av网站在线观看免费| 秋霞综合在线视频| 99久久精品一区二区成人| aiai在线| 一级做a爱片久久毛片| 在线观看黄网址| 丰满人妻一区二区三区免费视频棣 | 一区二区三区四区视频免费观看| av在线私库| 国产天堂在线| 四虎永久在线| 性生交大片免费看女人按摩| 中文字幕亚洲乱码熟女1区2区| 亚洲一二三在线观看| 久草视频福利在线| 中文字幕66页| 苍井空浴缸大战猛男120分钟| 色香蕉在线观看| 裸模一区二区三区免费| 国产精品国产三级国产专播精品人| 精品国产一区二区三区久久| 亚洲九九九在线观看| 欧美不卡一区二区| 7777精品伊人久久久大香线蕉的| 欧美日韩精品在线播放| 亚洲国产高清在线观看视频| 久久综合久久99| caoporen国产精品视频| 国产精品伊人色| 日一区二区三区| 男人的天堂亚洲| 一本色道精品久久一区二区三区 | 日本在线视频免费观看| 青青草福利视频| 亚洲黄色小说视频| 亚洲不卡1区| 国内成+人亚洲| 高清不卡日本v二区在线| 国产啪精品视频| 国产精品一区二区在线| 国产精品麻豆va在线播放| 日韩美女视频免费在线观看| 欧美孕妇性xx| 国产成人精品免费久久久久| 热re91久久精品国99热蜜臀| 国产成人拍精品视频午夜网站| 欧美重口另类videos人妖| 69av成年福利视频| 国产xxx69麻豆国语对白| 国产成人av在线| 国产日韩精品在线| 亚洲字幕一区二区| 国产九色精品| 欧洲成人一区二区| 亚洲一卡二卡区| 男人的天堂视频在线| 黄色一级片黄色| 成人av一级片| 色婷婷.com| 理论片大全免费理伦片| 国产精久久一区二区三区| 男人天堂资源网| 精品在线视频观看| 91porny九色| www.日韩高清| 色中色在线视频| 日本激情视频在线观看| 在线观看完整版免费| 91精选在线| 快播电影网址老女人久久| 四虎视频在线精品免费网址| 菁菁伊人国产精品| 国产精品99一区二区三区| 午夜天堂精品久久久久| 免费看欧美女人艹b| 国产成人免费网站| 国产三级一区二区三区| 一区二区三区视频在线看| 色婷婷精品大在线视频| 日韩视频一区在线观看| 永久555www成人免费| 欧美激情亚洲视频| 97国产suv精品一区二区62| 国产在线视频2019最新视频| 噜噜噜噜噜久久久久久91| 9色视频在线观看| 久久这里只精品| 美女100%无挡| 日本少妇性高潮| 国产叼嘿视频在线观看| 在线免费日韩| a'aaa级片在线观看| 成人啊v在线| 国产毛片一区二区三区| 99av国产精品欲麻豆| 国产suv一区二区三区88区| 国产精品卡一卡二| 欧美一a一片一级一片| 日韩国产中文字幕| 18性欧美xxxⅹ性满足| 国产精品一级久久久| 一区二区三区四区免费观看| 亚洲激情在线看| 精品人妻无码中文字幕18禁| 亚洲少妇xxx| 国产jzjzjz丝袜老师水多| 国产中文在线| 成人全视频免费观看在线看| 日韩中文字幕无砖| 欧美视频成人| 91视频在线看| 欧美吻胸吃奶大尺度电影| 国产亚洲免费的视频看| 久久久久国产视频| 国产一区二区不卡视频| 日韩精品视频一区二区在线观看| 成年人网站免费看| 中文字字幕在线中文乱码| 青青草手机在线| 亚洲精品aaa| 国产精品www994| 国产亚洲精品福利| 欧美日韩夫妻久久| 午夜精品一区二区三区在线视| 精品一区二区三区国产| 爱情岛论坛成人| 少妇太紧太爽又黄又硬又爽小说| 国产精品爽爽久久久久久| 麻豆传媒在线观看| 亚洲日日夜夜| 国产欧美日韩一区二区三区在线| 中文字幕欧美区| 亚洲男人天堂2023| 国产欧美一区二区三区另类精品 | 国产丝袜精品第一页| 92国产精品视频| 亚洲另类第一页| 国产黄色免费视频| 咪咪网在线视频| 亚洲成人在线| 午夜精品在线看| 欧美精品激情blacked18| 黄色免费高清视频| 三级黄色在线观看| 成年人视频在线看| 成人羞羞网站| 亚洲天堂2014| 久久99久久99精品免观看粉嫩| 天天在线免费视频| 国产精品电影院| 米奇777在线欧美播放| 亚洲免费观看高清完整版在线观看 | 亚洲一区二区三区高清视频| 日本欧美电影在线观看| 中文字幕亚洲精品乱码| 亚洲欧美日韩国产手机在线| 久久精彩免费视频| 麻豆传媒网站在线观看| 久久久国产精品黄毛片| av毛片在线看| 99视频一区| 色av一区二区| 2022国产精品| 自拍偷拍中文字幕| 欧美视频综合| 68国产成人综合久久精品| 一区二区三区久久| 日韩暖暖在线视频| 久久出品必属精品| 熟妇人妻中文av无码| 精品亚洲免a| 国产精品你懂的在线欣赏| 久久99青青精品免费观看| 精品无码一区二区三区在线| 人妻中文字幕一区二区三区| 素人啪啪色综合| 成人在线综合网站| 亚洲香蕉成人av网站在线观看| 正义之心1992免费观看全集完整版| 国产乱国产乱老熟300| 超碰资源在线| 国产美女在线观看一区| 亚洲天堂视频在线观看| 欧美一区二区三区综合| 亚洲欧美自拍视频| 欧美高清影院| av日韩在线网站| 欧美精品在线观看91| 国产又猛又黄的视频| 污污视频在线观看网站| 欧美激情欧美| 欧美影院午夜播放| 精品国产乱码久久久久久丨区2区 精品国产乱码久久久久久蜜柚 | 91久色国产| 九九热最新地址| 亚洲成a人片| 91香蕉视频污| 91精品国产九九九久久久亚洲| 色哟哟精品视频| 久草在线看片| 狠狠入ady亚洲精品经典电影| 欧美日韩国产大片| 亚洲国产激情一区二区三区| 久久夜色精品国产噜噜亚洲av| 国产精品久久久久久av公交车| 日本一区二区三区四区| 国产精品久久久久影院日本| 丝袜美腿中文字幕| 国产黄色大片在线观看| 国产成人8x视频一区二区| 欧美夫妻性视频| aaa黄色大片| 182tv在线播放| 国产成人av电影在线| 欧美精品videosex性欧美| 国产又黄又嫩又滑又白| 日本www在线观看| 久久福利视频一区二区| 精品国内亚洲在观看18黄| 亚洲第一成肉网| 成年人视频在线看| 国产一区二区电影| 久久久久久亚洲精品| 欧美亚一区二区三区| 国产网站在线| 欧美国产精品v| 亚洲综合小说区| 国产乱码久久久久久| 果冻天美麻豆一区二区国产| 性做久久久久久| 日本三级中国三级99人妇网站| 一级片在线观看视频| 久久人人88| 亚洲成人av在线| 天天操天天摸天天爽| 91caoporn在线| 成人黄色大片在线观看| 国产精品va在线播放| 久久久久成人精品无码| 欧美色图婷婷| 欧美日韩高清一区| koreanbj精品视频一区| 国产中文字幕在线看| 国产精品综合av一区二区国产馆| 97国产精品视频人人做人人爱| www.4hu95.com四虎| 国产精品一区二区美女视频免费看| 亚洲成人av一区二区| 中国一级黄色录像| 在线观看国产麻豆| 国产盗摄女厕一区二区三区| 国产成人精品亚洲精品| 久久久久无码精品国产| 精品毛片免费观看| 亚洲高清福利视频| 三级网站免费看| 不卡一二三区| 亚洲成人在线免费| 青青在线免费视频| 国产三级视频在线看| av一区二区不卡| 91精品天堂| 国产视频手机在线观看| 鲁大师成人一区二区三区| 欧美激情国产高清| avtt天堂在线| 日韩精品久久久久久久电影99爱| 国产丝袜一区二区| 国产伦精品一区二区三区妓女| 国产精品久久免费视频| 91福利视频网站| 一级在线免费视频| 原纱央莉成人av片| 岛国av一区二区| av动漫免费看| 日韩精品美女| 在线亚洲+欧美+日本专区| 精品视频免费在线播放| av片在线观看| 午夜欧美2019年伦理| 久在线观看视频| 欧美6一10sex性hd| 亚洲成av人片在线观看无码| 亚洲人成无码网站久久99热国产| 精品麻豆一区二区三区| 亚洲日本青草视频在线怡红院| 99精品视频网站| 日韩伦理在线电影| 亚洲欧美一区二区三区国产精品| 一个色的综合| 蜜桃视频在线观看www社区| 日韩一区在线免费观看| 日本一本草久p| 超碰电影在线播放| 亚洲午夜电影在线| 日韩欧美在线免费观看视频| 午夜无码国产理论在线| 精品视频一区三区九区| 绯色av蜜臀vs少妇| 高潮久久久久久久久久久久久久| 亚洲精品一区中文| 三级黄色在线观看| 欧美久久成人| 国产精品伦子伦免费视频| 亚洲大尺度视频| 99riav一区二区三区| 椎名由奈jux491在线播放| 五月天激情在线| 欧美视频日韩视频| 免费啪视频在线观看| 美女网站色精品尤物极品姐弟| 在线成人一区二区| 日本一本高清视频| 老妇喷水一区二区三区| 成人黄色片视频网站| 午夜黄色在线观看| 亚洲精品乱码久久久久久日本蜜臀| 日本wwww视频| 成人国产精品久久| 正在播放欧美一区| 国产成人亚洲欧洲在线| 日韩av电影一区| 裸模一区二区三区免费| 国产在线高清理伦片a| 欧美在线观看一区| 午夜av免费看| 亚洲成av人片一区二区密柚| 日韩av片永久免费网站| 午夜视频在线播放| 综合网在线视频| 欧美特黄aaa| 欧美三级午夜理伦三级在线观看| 欧美交受高潮1| 丰满少妇被猛烈进入| 国产精品私人影院| 青青草av网站| 天海翼亚洲一区二区三区| 国模精品系列视频| 亚洲国产剧情在线观看| 欧美激情一区二区三区四区 | 中文字幕 欧美 日韩| 精品一二三区| 国产精品一区=区| 日本中文字幕一区二区有码在线| 亚洲国产日韩一区二区| 国产日韩视频一区| 欧美成人tv| 国产精品中出一区二区三区| av免费在线网站| 亚洲精品在线一区二区| 欧美三级午夜理伦| 不卡区在线中文字幕| 五十路熟女丰满大屁股| 97se亚洲国产一区二区三区| 久久69精品久久久久久国产越南| 成人免费公开视频| 亚洲影视在线观看| 国产特级黄色录像| a91a精品视频在线观看| 欧美人xxxxx| 3d欧美精品动漫xxxx无尽| 日韩中文字幕在线播放| 国产草草影院ccyycom| 一区二区在线观看免费| 久久久久亚洲AV成人无码国产| 中文国产一区| 亚洲一区三区视频在线观看| 欧美色片在线观看| 欧美精品做受xxx性少妇| 天天综合网天天综合| 色综合久久久久综合99| frxxee中国xxx麻豆hd| 国产成人免费网站| 男人搞女人网站| 99久久夜色精品国产亚洲狼| 久久精品综合一区| 玛雅亚洲电影| 欧美激情免费看| 可以免费看污视频的网站在线| 欧美日韩精品免费观看视频| 精品无码人妻一区二区三区| 99精品视频一区二区| 亚洲日本黄色片| 亚洲国产日本| 日韩国产精品毛片| 精品av导航| 99re6在线| 先锋欧美三级| 2019中文字幕免费视频| 三级外国片在线观看视频| 亚洲激情视频在线| www.97av| 欧美日韩一二三区| 无码视频在线观看| 亚洲丶国产丶欧美一区二区三区| 二区三区四区视频| 久久久五月婷婷| 中文在线一区二区三区| 激情综合亚洲精品|