已知z="2x" +y,x,y滿足
且z的最大值是最小值的4倍,則a的值是 .
![]()
解析試題分析:題意可得先作出不等式表示的 平面區域,由z=2x+y可得y=-2x+z,則z表示直線y=-2x+z在y軸上的截距,截距越大,z越大,可求Z的最大值與最小值,即可求解a
由題意可得,B(1,1)
∴a<1,不等式組表示的 平面區域如圖所示的△ABC
由z=2x+y可得y=-2x+z,則z表示直線y=-2x+z在y軸上的截距,截距越大,z越大
作直線L:y=-2x,把直線向可行域平移,當直線經過C時Z最小,當直線經過點B時,Z最大,由x=a,y=x,解得交點(a,a),此時Z=3a
由y=x,x+y-2=0,可得交點為B(1,1),此時z=3,故可知∴3=4×3a
∴a=
故答案![]()
考點:線性規劃的最優解問題
點評:線性規劃是高考重要內容,也是常考內容.此題考查該知識點增加一點變化,比較好.
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com