【題目】已知函數(shù)f(x)=eax(a≠0).
(1)當(dāng)
時(shí),令
(x>0),求函數(shù)g(x)在[m,m+1](m>0)上的最小值;
(2)若對(duì)于一切x∈R,f(x)﹣x﹣1≥0恒成立,求a的取值集合;
(3)求證:
.
【答案】
(1)解:當(dāng)a=
時(shí),g(x)=
,則g'(x)=
.
當(dāng)
﹣1>0,即x>2時(shí),g'(x)>0;
當(dāng)
﹣1<0且x≠0,即x<2或0<x<2時(shí),g'(x)<0.
則g(x)的增區(qū)間為(2,+∞),減區(qū)間為(﹣∞,0),(0,2).
因?yàn)閙>0,所以m+1>1,
①當(dāng)m+1≤2,即0<m≤1時(shí),g(x)在[m,m+1]上單調(diào)遞減,
所以g(x)min=g(m+1)= ![]()
②當(dāng)m<2<m+1,即1<m<2時(shí),g(x)在[m,2]上單調(diào)遞減,
在[2,m+1]上單調(diào)遞增,所以g(x)min=g(2)= ![]()
③當(dāng)m≥2時(shí),g(x)在[m,m+1]上單調(diào)遞增,所以g(x)min=g(m)=
.
綜上,g(x)min= ![]()
(2)解:設(shè)h(x)=f(x)﹣x﹣1=eax﹣x﹣1
若a<0,則對(duì)一切x>0,h(x)<0這與題設(shè)矛盾.
又a≠0,故a>0.而h'(x)=aeax﹣1,令h'(x)=0,得x=
,
當(dāng)x<
時(shí),h'(x)<0,h(x)單調(diào)遞減;
當(dāng)x>
時(shí),h'(x)>0,h(x)單調(diào)遞增.
故當(dāng)x=
時(shí),h(x)取最小值
﹣
﹣1.
于是對(duì)一切x∈R,h(x)≥0恒成立,當(dāng)且僅當(dāng)
﹣1≥0①
令φ(x)=t﹣tlnt﹣1,則φ'(x)=﹣lnt
當(dāng)0<t<1時(shí),φ'(t)>0,φ(t)單調(diào)遞增;
當(dāng)t>1時(shí),φ'(t)<0,φ(t)單調(diào)遞減,
故當(dāng)t=1時(shí),φ(t)取最大值φ(1)=0,
因此,當(dāng)且僅當(dāng)
=1,即a=1時(shí),①式成立.
綜上所述,a的取值集合為{1}
(3)證明:由(2)可知,當(dāng)x>0時(shí),g(x)=
,
所以
(x>0),
可得
≤ ![]()
于是
+ ![]()
≤ ![]()
< ![]()
=
< ![]()
【解析】(1)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的表達(dá)式,求出函數(shù)的單調(diào)區(qū)間,通過討論m的范圍求出函數(shù)的最小值即可;(2)設(shè)h(x)=f(x)﹣x﹣1=eax﹣x﹣1,求出a>0,解根據(jù)導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間,得到當(dāng)且僅當(dāng)
﹣1≥0①令φ(x)=t﹣tlnt﹣1,根據(jù)函數(shù)的單調(diào)性求出a的范圍即可;(3)由g(x)=
,可得
≤
,根據(jù)不等式的性質(zhì)證明即可.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】由于研究性學(xué)習(xí)的需要,中學(xué)生李華持續(xù)收集了手機(jī)“微信運(yùn)動(dòng)”團(tuán)隊(duì)中特定20名成員每天行走的步數(shù),其中某一天的數(shù)據(jù)記錄如下: 5860 6520 7326 6798 7325
8430 8215 7453 7446 6754
7638 6834 6460 6830 9860
8753 9450 9860 7290 7850
對(duì)這20個(gè)數(shù)據(jù)按組距1000進(jìn)行分組,并統(tǒng)計(jì)整理,繪制了如下尚不完整的統(tǒng)計(jì)圖表:
步數(shù)分組統(tǒng)計(jì)表(設(shè)步數(shù)為x)
組別 | 步數(shù)分組 | 頻數(shù) |
A | 5500≤x<6500 | 2 |
B | 6500≤x<7500 | 10 |
C | 7500≤x<8500 | m |
D | 8500≤x<9500 | 2 |
E | 9500≤x<10500 | n |
(Ⅰ)寫出m,n的值,并回答這20名“微信運(yùn)動(dòng)”團(tuán)隊(duì)成員一天行走步數(shù)的中位數(shù)落在哪個(gè)組別;
(Ⅱ)記C組步數(shù)數(shù)據(jù)的平均數(shù)與方差分別為v1 ,
,E組步數(shù)數(shù)據(jù)的平均數(shù)與方差分別為v2 ,
,試分別比較v1與v2 ,
與
的大小;(只需寫出結(jié)論)
(Ⅲ)從上述A,E兩個(gè)組別的數(shù)據(jù)中任取2個(gè)數(shù)據(jù),記這2個(gè)數(shù)據(jù)步數(shù)差的絕對(duì)值為ξ,求ξ的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知平面向量
,
,
滿足|
|=|
|=
,|
|=1,若(
﹣
)(
﹣
)=0,則|
﹣
|的取值范圍是( )
A.[1,2]
B.[2,4]
C.[
﹣1,
+1]
D.[
﹣1,
+1]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,為測(cè)量山高M(jìn)N,選擇A和另一座山的山頂C為測(cè)量觀測(cè)點(diǎn).從A點(diǎn)測(cè)得 M點(diǎn)的仰角∠MAN=60°,C點(diǎn)的仰角∠CAB=45°以及∠MAC=75°;從C點(diǎn)測(cè)得∠MCA=60°.已知山高BC=100m,則山高M(jìn)N=m. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2cos22x﹣2,給出下列命題: ①β∈R,f(x+β)為奇函數(shù);
②α∈(0,
),f(x)=f(x+2α)對(duì)x∈R恒成立;
③x1 , x2∈R,若|f(x1)﹣f(x2)|=2,則|x1﹣x2|的最小值為
;
④x1 , x2∈R,若f(x1)=f(x2)=0,則x1﹣x2=kπ(k∈Z).其中的真命題有( )
A.①②
B.③④
C.②③
D.①④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C:(x+1)2+y2=8,點(diǎn)A(1,0),P是圓C上任意一點(diǎn),線段AP的垂直平分線交CP于點(diǎn)Q,當(dāng)點(diǎn)P在圓上運(yùn)動(dòng)時(shí),點(diǎn)Q的軌跡為曲線E.
(1)求曲線E的方程;
(2)若直線l:y=kx+m與曲線E相交于M,N兩點(diǎn),O為坐標(biāo)原點(diǎn),求△MON面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l:x+ay﹣1=0是圓C:x2+y2﹣4x﹣2y+1=0的一條對(duì)稱軸,過點(diǎn)A(﹣4,a)作圓C的兩條切線,切點(diǎn)分別為B、D,則直線BD的方程為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xoy中,以O(shè)為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,直線l的極坐標(biāo)方程為θ=
,曲線C的參數(shù)方程為
.
(1)寫出直線l與曲線C的直角坐標(biāo)方程;
(2)過點(diǎn)M平行于直線l1的直線與曲線C交于A、B兩點(diǎn),若|MA||MB|=
,求點(diǎn)M軌跡的直角坐標(biāo)方程.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com