如圖,四邊形ABCD中,AB⊥AD,AD∥BC,AD=6,BC=4,AB=3,點(diǎn)E、F分別在BC、AD上,EF∥AB.現(xiàn)將四邊形ABEF沿EF折起,使平面ABEF
平面EFDC,設(shè)AD中點(diǎn)為P.
(Ⅰ)當(dāng)E為BC中點(diǎn)時(shí),求證:CP∥平面ABEF;
(Ⅱ)設(shè)BE=x,當(dāng)x為何值時(shí),三棱錐A-CDF的體積有最大值?并求出這個(gè)最大值.![]()
(Ⅰ)見解析;(Ⅱ)當(dāng)
時(shí),
有最大值,最大值為
.
解析試題分析:(Ⅰ)取
的中點(diǎn)
,連
、
,證明四邊形
為平行四邊形,再由線面平行定理證明
∥平面
;(Ⅱ)先求三棱錐A-CDF的體積關(guān)于x的表達(dá)式,再看體積是否有最大值,并求出此時(shí)x的值.
試題解析:解:(Ⅰ)取
的中點(diǎn)
,連
、
,則![]()
![]()
,
又
∥
,∴![]()
![]()
,即四邊形
為平行四邊形,3分
∴
∥
,又EQ
平面
,
平面ABEF,故
∥平面
. 6分
(Ⅱ)因?yàn)槠矫?img src="http://thumb.zyjl.cn/pic5/tikupic/89/f/9kl9b1.png" style="vertical-align:middle;" />平面
,平面
平面
,
又
∴
平面
8分
由已知
,所以
故
, 11分
∴當(dāng)
時(shí),
有最大值,最大值為
. 12分
考點(diǎn):1、線面平行的判定定理;2、面面垂直的性質(zhì)定理;3、線面垂直的判定定理;4、三棱錐體積的求法及二次函數(shù)最值求法.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
在邊長(zhǎng)為
的正方形ABCD中,E、F分別為BC、CD的中點(diǎn),M、N分別為AB、CF的中點(diǎn),現(xiàn)沿AE、AF、EF折疊,使B、C、D三點(diǎn)重合,重合后的點(diǎn)記為
,構(gòu)成一個(gè)三棱錐.![]()
(1)請(qǐng)判斷
與平面
的位置關(guān)系,并給出證明;
(2)證明
平面
;
(3)求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱錐P-ABCD中,PA丄平面ABCD,
,
,AD=AB=1,AC和BD交于O點(diǎn).
(I)求證:平面PBD丄平面PAC.
(II)當(dāng)點(diǎn)A在平面PBD內(nèi)的射影G恰好是ΔPBD的重心時(shí),求二面角B-PD-A的余弦值.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,四面體
中,
、
分別是
、
的中點(diǎn),![]()
(Ⅰ)求證:
平面
;
(Ⅱ)求異面直線
與
所成角余弦值的大小;
(Ⅲ)求點(diǎn)
到平面
的距離.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,三棱柱A1B1C1—ABC的三視圖中,正(主)視圖和側(cè)(左)視圖是全等的矩形,俯視圖是等腰直角三角形,點(diǎn)M是A1B1的中點(diǎn).![]()
(1)求證:B1C∥平面AC1M;
(2)求證:平面AC1M⊥平面AA1B1B.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,四邊形
中(圖1),
,![]()
中點(diǎn)為
,將圖1沿直線
折起,使二面角
為
(圖2)
![]()
(1)過
作直線
平面
,且
平面
=
,求
的長(zhǎng)度。
(2)求直線
與平面
所成角的正弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,△
是等邊三角形,
,
,
,
,
分別是
,
,
的中點(diǎn),將△
沿
折疊到
的位置,使得
.
![]()
(1)求證:平面
平面
;
(2)求證:
平面
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在三棱柱ABC-A1B1C1中,E,F(xiàn),G,H分別是AB,AC,A1B1,A1C1的中點(diǎn),求證:![]()
(1)B,C,H,G四點(diǎn)共面;
(2)平面EFA1∥平面BCHG.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com