中心在原點,焦點在橫軸上,長軸長為4,短軸長為2,則橢圓方程是( )
由條件可設(shè)橢圓標(biāo)準(zhǔn)方程為

;因為長軸長為4,短軸長為2,所以

故選B
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
△ABC中,A(-2,0),B(2,0),則滿足△ABC的周長為8的點C的軌跡方程為
_______。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)已知橢圓:

,過坐標(biāo)原點O作兩條互相垂直的射線,與橢圓分別交于A,B兩點.
(I)求證O到直線AB的距離為定值.
(Ⅱ)求△0AB面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分15分) 已知拋物線C的頂點在原點, 焦點為F(0,1).
(1) 求拋物線C的方程;
(2)在拋物線C上是否存在點P, 使得過點P
的直線交C于另一點Q,滿足PF⊥QF, 且
PQ與C在點P處的切線垂直.若存在,求出
點P的坐標(biāo); 若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分13分)
已知拋物線

的頂點在原點,焦點為

,且過點

.
(1)求
t的值;
(2)若直線

與拋物線

只有一個公共點,求實數(shù)

的值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本題滿分14分)已知橢圓的中心在原點,焦點在

軸上,長軸是短軸的3倍,且經(jīng)過點

,求橢圓的標(biāo)準(zhǔn)方程
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓

的離心率

,且橢圓過點

.
(1)求橢圓

的方程;
(2)若

為橢圓

上的動點,

為橢圓的右焦點,以

為圓心,

長為半徑作圓

,過點

作圓

的兩條切線

,(

為切點),求點

的坐標(biāo),使得四邊形

的面積最大.]
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知a、b、c分別為雙曲線的實半軸長、虛半軸長、半焦距,且方程

無實根,則雙曲線離心率的取值范圍是( )
查看答案和解析>>