(本題滿分13分)已知動圓
與直線
相切,且與定圓
外切,求動圓圓心
的軌跡方程.
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知,橢圓C以過點A(1,
),兩個焦點為(-1,0)(1,0)?
(1)求橢圓C的方程;
(2)E,F是橢圓C上的兩個動點,如果直線AE的斜率與AF的斜率互為相反數(shù),證明直線EF的斜率為定值,并求出這個定值?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題15分)設(shè)拋物線
和點
,.斜率為
的直線與拋物線
相交不同的兩個點
.若點
恰好為
的中點.
(1)求拋物線
的方程,
(2) 拋物線
上是否存在異于
的點
,使得經(jīng)過點
的圓和拋物線
在
處有相同的切線.若存在,求出點
的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題14分)已知直線
經(jīng)過橢圓
的左頂點A和上頂點D,橢圓
的右頂點為
,點
是橢圓
上位于
軸上方的動點,直線
與直線
分別交于
兩點。![]()
(I)求橢圓
的方程;
(Ⅱ)求線段
的長度的最小值;
(Ⅲ)當(dāng)線段
的長度最小時,在橢圓
上是否存在這樣的點
,使得
的面積為
?若存在,確定點
的個數(shù),若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分13分) 已知拋物線
與直線
相交于
兩點.
(1)求證:以
為直徑的圓過坐標(biāo)系的原點
;(2)當(dāng)
的面積等于
時,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(14分)設(shè)橢圓
的左、右焦點分別為
,上頂點為
,在
軸負(fù)半軸上有一點
,滿足
,且
.![]()
(Ⅰ)求橢圓
的離心率;
(Ⅱ)D是過
三點的圓上的點,D到直線
的最大距離等于橢圓長軸的長,求橢圓
的方程;
(Ⅲ)在(Ⅱ)的條件下,過右焦點
作斜率為
的直線
與橢圓
交于
兩點,在
軸上是否存在點
使得以
為鄰邊的平行四邊形是菱形,如果存在,求出
的取值范圍,如果不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
拋物線
的焦點為
,過點
的直線交拋物線于
,
兩點.
①若
,求直線
的斜率;
②設(shè)點
在線段
上運動,原點
關(guān)于點
的對稱點為
,求四邊形
面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知焦點在
軸上的雙曲線
的兩條漸近線過坐標(biāo)原點,且兩條漸近線與以
點
為圓心,1為半徑的圓相切,又知
的一個焦點與A關(guān)于直線
對稱.
(1)求雙曲線
的方程;
(2)設(shè)直線
與雙曲線
的左支交于
,
兩點,另一直線
經(jīng)過
及
的中點,求直線
在
軸上的截距
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
的離心率為
,并且直線
是拋物線
的一條切線。
(1)求橢圓的方程
(2)過點
的動直線
交橢圓
于
、
兩點,試問:在直角坐標(biāo)平面上是否存在一個定點
,使得以
為直徑的圓恒過點
?若存在求出
的坐標(biāo);若不存在,說明理由。
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com