【題目】如圖,半圓AOB是某市休閑廣場的平面示意圖,半徑OA的長為10,管理部門在A,B兩處各安裝好一個光源,其相應的光強度分別為4和9,根據(jù)光學原理,地面上某處照度y與光強度I成正比,與光源距離x的平方成反比,即y=
(k為比例系數(shù)),經(jīng)測量,在弧AB的中心C處的照度為130.(C處的照度為A,B兩處光源的照度之和) ![]()
(1)求比例系數(shù)k的值;
(2)現(xiàn)在管理部門計劃在半圓弧AB上,照度最小處增設一個光源P,試問新增光源P安裝在什么位置?
【答案】
(1)解:∵半徑為r=10,
∴BC=AC=10 ![]()
∵y=
,
則點C受光源A的照度為
,
點C受光源B的照度為
,
∴
+
=130,
解得k=2000
(2)解:由(1)可得y=
,
設新增光源P距離AP=x處,
則y=
+
,
∴y=5[x2+(400﹣x2)]
=5
≥5
=125,當且僅當x=4
時取等號.
新增光源P安裝在距離點A出4
時
【解析】(1)半徑為r=10,BC=AC=10
,可得y=
,點C受光源A的照度為
,點C受光源B的照度為
,可得
+
=130,解出即可得出.(2)由(1)可得y=
,設新增光源P距離AP=x處,可得y=
+
,利用基本不等式的性質(zhì)即可得出.
【考點精析】關(guān)于本題考查的基本不等式,需要了解基本不等式:![]()
,(當且僅當
時取到等號);變形公式:![]()
才能得出正確答案.
科目:高中數(shù)學 來源: 題型:
【題目】在如圖所示的幾何體中,平面
平面
,四邊形
為平行四邊形,
,
,
,
.
(1)求證:
平面
;
(2)求
到平面
的距離;
(3)求三棱錐
的體積.
![]()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
.
(1)解不等式
;
(2)若函數(shù)
在區(qū)間
上存在零點,求實數(shù)
的取值范圍;
(3)若函數(shù)
,其中
為奇函數(shù),
為偶函數(shù),若不等式
對任意
恒成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若函數(shù)
的圖象和直線
無交點,給出下列結(jié)論:
①方程
一定沒有實數(shù)根;
②若
,則必存在實數(shù)
,使
;
③若
,則不等式
對一切實數(shù)
都成立;
④函數(shù)
的圖象與直線
也一定沒有交點.
其中正確的結(jié)論個數(shù)有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知命題p:指數(shù)函數(shù)f(x)=(m+1)x是減函數(shù);命題q:x∈R,x2+x+m<0,若“p或q”是真命題,則實數(shù)m的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在校運動會上,甲、乙、丙三位同學每人均從跳遠,跳高,鉛球,標槍四個項目中隨機選一項參加比賽,假設三人選項目時互不影響,且每人選每一個項目時都是等可能的
(1)求僅有兩人所選項目相同的概率;
(2)設X為甲、乙、丙三位同學中選跳遠項目的人數(shù),求X的分布列和數(shù)學期望E(X)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線
經(jīng)過直線
與
的交點
.
(1)點
到直線
的距離為3,求直線
的方程;
(2)求點
到直線
的距離的最大值,并求距離最大時的直線
的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,某生態(tài)園將一三角形地塊ABC的一角APQ開辟為水果園種植桃樹,已知角A為120°,AB,AC的長度均大于200米,現(xiàn)在邊界AP,AQ處建圍墻,在PQ處圍竹籬笆. ![]()
(1)若圍墻AP,AQ總長度為200米,如何圍可使得三角形地塊APQ的面積最大?
(2)已知AP段圍墻高1米,AQ段圍墻高1.5米,AP段圍墻造價為每平方米150元,AQ段圍墻造價為每平方米100元.若圍圍墻用了30000元,問如何圍可使竹籬笆用料最省?
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com