已知橢圓
的焦點為
,點
是橢圓
上的一點,
與
軸的交點
恰為
的中點,
.
(1)求橢圓
的方程;
(2)若點
為橢圓的右頂點,過焦點
的直線與橢圓
交于不同的兩點
,求
面積的取值范圍.
(1)
(2)![]()
解析試題分析:(1)根據已知分析可得點
橫坐標為1,縱坐標為
,,即點
。法一:將
代入橢圓方程,結合
且
,解方程組可得
的值。法二:根據橢圓的定義求點
到兩焦點的距離的和即為
,再根據關系式
求得
。(2)設過點
的直線
的斜率為
,顯然
(注意討論直線斜率存在與否)。當直線的斜率不存在時,直線方程為
,將
代入橢圓方程可得
的縱坐標,從而可得
,根據橢圓圖像的對稱性可知
,因此可得
。當直線斜率存在時設直線
的方程為
,將直線與橢圓方程聯立,消去
(或
)得關于
的一元二次方程,從而可得根與系數的關系。根據弦長公式求
,再用點到線的距離公式求點
到直線
的距離
,所以
。最后根據基本不等式求其范圍即可。
解:(1)因為
為
的中點,
為
的中點,
,
所以
,且
. 1分
所以
.
因為
,
所以
. 2分
因為
, 3分
所以
.
所以橢圓
的方程為
. 4分
(2)設過點
的直線
的斜率為
,顯然
.
(1)當
不存在時,直線
的方程為
,
所以
.
因為![]()
![]()
科目:高中數學 來源: 題型:解答題
(13分)(2011•天津)設橢圓
+
=1(a>b>0)的左、右焦點分別為F1,F2.點P(a,b)滿足|PF2|=|F1F2|.
(Ⅰ)求橢圓的離心率e;
(Ⅱ)設直線PF2與橢圓相交于A,B兩點,若直線PF2與圓(x+1)2+
=16相交于M,N兩點,且|MN|=
|AB|,求橢圓的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
設橢圓
的左、右焦點分別為
,上頂點為A,在x軸負半軸上有一點B,滿足
三點的圓與直線
相切.
(1)求橢圓C的方程;
(2)過右焦點
作斜率為k的直線
與橢圓C交于M,N兩點,線段MN的垂直平分線與x軸相交于點P(m,0),求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,橢圓
經過點P(1.
),離心率e=
,直線l的方程為x=4.![]()
(1)求橢圓C的方程;
(2)AB是經過右焦點F的任一弦(不經過點P),設直線AB與直線l相交于點M,記PA,PB,PM的斜率分別為
.問:是否存在常數λ,使得
?若存在,求λ的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,已知橢圓
,直線
的方程為
,過右焦點
的直線
與橢圓交于異于左頂點
的
兩點,直線
,
交直線
分別于點
,
.
(1)當
時,求此時直線
的方程;
(2)試問
,
兩點的縱坐標之積是否為定值?若是,求出該定值;若不是,請說明理由.![]()
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓
的中心在原點
,焦點在
軸上,離心率為
,右焦點到右頂點的距離為
.
(Ⅰ)求橢圓
的標準方程;
(Ⅱ)若直線![]()
與橢圓
交于
兩點,是否存在實數
,使
成立?若存在,求
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓
的離心率為
,其短軸兩端點為
.
(1)求橢圓
的方程;
(2)若
是橢圓
上關于
軸對稱的兩個不同點,直線
與
軸分別交于點
.判斷以
為直徑的圓是否過點
,并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,已知圓
,經過橢圓
的右焦點F及上頂點B,過圓外一點
傾斜角為
的直線
交橢圓于C,D兩點,
(1)求橢圓的方程;
(2)若右焦點F在以線段CD為直徑的圓E的外部,求m的取值范圍.![]()
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓C:
(a>b>0),過點(0,1),且離心率為
.
(1)求橢圓C的方程;
(2)A,B為橢圓C的左右頂點,直線l:x=2
與x軸交于點D,點P是橢圓C上異于A,B的動點,直線AP,BP分別交直線l于E,F兩點.證明:當點P在橢圓C上運動時,
恒為定值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com