(本題滿分15分)已知直線
與曲線
相切
1)求b的值;
2)若方程
在
上恰有兩個不等的實數根
,求
①m的取值范圍;
②比較
的大小
解:1)
……………………………………1分
設切點位
,由題意得
……………………………………………………………4分
聯立消
,得
,由方程知
[來源:Z&xx&k.Com]
∴b=3…………………………………………………………………………5分
2)解1:設
……………………6分
[來源:學|科|網Z|X|X|K]
①![]()
故h(x)在(0,3)上單調遞減
故h(x)在(3,
)上單調遞增,……………9分
若使h(x)圖象在(0,
)內與x軸有兩個不同的交點
則需
,
……………………………………11分
此時存在![]()
所求m的取值范圍是(-9,0)……………………………………………………12分
②由①知,
滿足![]()
![]()
…………………………………………………………15分
【解析】略
科目:高中數學 來源:2013屆浙江省余姚中學高三上學期期中考試文科數學試卷(帶解析) 題型:解答題
(本題滿分15分)已知點
(0,1),
,直線
、
都是圓
的切線(
點不在
軸上).
(Ⅰ)求過點
且焦點在
軸上的拋物線的標準方程;
(Ⅱ)過點(1,0)作直線
與(Ⅰ)中的拋物線相交于![]()
兩點,問是否存在定點
使
為常數?若存在,求出點
的坐標及常數;若不存在,請說明理由
查看答案和解析>>
科目:高中數學 來源:2011-2012學年浙江省桐鄉市高三10月月考理科數學 題型:解答題
(本題滿分15分)已知函數
.
(Ⅰ)若
為定義域上的單調函數,求實數m的取值范圍;
(Ⅱ)當
時,求函數
的最大值;
(Ⅲ)當
,且
時,證明:
.
查看答案和解析>>
科目:高中數學 來源:2011-2012學年浙江省桐鄉市高三下學期2月模擬考試文科數學 題型:解答題
(本題滿分15分)已知圓N:
和拋物線C:
,圓的切線
與拋物線C交于不同的兩點A,B,
(1)當直線
的斜率為1時,求線段AB的長;
(2)設點M和點N關于直線
對稱,問是否存在直線
使得
?若存在,求出直線
的方程;若不存在,請說明理由.
![]()
查看答案和解析>>
科目:高中數學 來源:杭州市2010年第二次高考科目教學質量檢測 題型:解答題
(本題滿分15分)已知直線
,曲線![]()
(1)若
且直線與曲線恰有三個公共點時,求實數
的取值;
(2)若
,直線與曲線M的交點依次為A,B,C,D四點,求|AB+|CD|的取值范圍。[來源:Z+xx+k.Com]
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com