試題分析:設橢圓的右焦點為E.如圖:

由橢圓的定義得:△FAB的周長:AB+AF+BF=AB+(4a-AE)+(4a-BE)=8a+AB-AE-BE;
∵AE+BE≥AB;
∴AB-AE-BE≤0,當AB過點E時取等號;
∴AB+AF+BF=8a+AB-AE-BE≤8a;
即直線x=m過橢圓的右焦點E時△FAB的周長最大;
此時△FAB的高為:EF=2a.
此時直線x=m=c=1;
把x=1代入橢圓的方程

得:y=±

.
∴AB=3a.所以:△FAB的面積等于:S
△FAB=

×3a×EF=

×3a×2a=3a
2故答案為3a
2點評:中檔題,在解決涉及到圓錐曲線上的“焦點三角形”問題時,圓錐曲線的定義往往是解題的突破口.解決本題的關鍵在于利用定義求出周長的表達式.