已知函數(shù)
,其中
.
(1)若
,求曲線(xiàn)
在點(diǎn)
處的切線(xiàn)方程;
(2)求函數(shù)的極大值和極小值,若函數(shù)
有三個(gè)零點(diǎn),求
的取值范圍.
(1)
;(2)
.
解析試題分析:(1)本小題首先代入
求得原函數(shù)的導(dǎo)數(shù),然后求出切點(diǎn)坐標(biāo)和切線(xiàn)的斜率,最后利用點(diǎn)斜式求得切線(xiàn)方程
;
(2)本小題首先求得原函數(shù)的導(dǎo)數(shù),通過(guò)導(dǎo)數(shù)零點(diǎn)的分析得出原函數(shù)單調(diào)性,做成表格,求得函數(shù)的極大值
和極小值
,若要
有三個(gè)零點(diǎn),只需![]()
即可,解不等式即可.
試題解析:(Ⅰ)當(dāng)
時(shí),
;![]()
所以曲線(xiàn)
在點(diǎn)
處的切線(xiàn)方程為
,
即
6分
(Ⅱ)
=
.令
,解得
8分
因
,則
.當(dāng)
變化時(shí),
、
的變化情況如下表:
則極大值為:x ![]()
0 ![]()
![]()
![]()
f’(x) + 0 - 0 + f(x) 遞增 極大值 遞減 極小值 遞增
,極小值為:
,
若要![]()
![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
的定義域?yàn)閰^(qū)間
.
(1)求函數(shù)
的極大值與極小值;
(2)求函數(shù)
的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知
,其中
,
,
(Ⅰ)若
為
上的減函數(shù),求
應(yīng)滿(mǎn)足的關(guān)系;
(Ⅱ)解不等式
。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知![]()
(1)求函數(shù)
在
上的最小值;
(2)對(duì)一切
恒成立,求實(shí)數(shù)
的取值范圍;
(3)證明:對(duì)一切
,都有
成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知
是正實(shí)數(shù),設(shè)函數(shù)
。
(Ⅰ)設(shè)
,求
的單調(diào)區(qū)間;
(Ⅱ)若存在
,使
且
成立,求
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)![]()
(1)當(dāng)
時(shí),求函數(shù)
的單調(diào)區(qū)間;
(2)當(dāng)函數(shù)自變量的取值區(qū)間與對(duì)應(yīng)函數(shù)值的取值區(qū)間相同時(shí),這樣的區(qū)間稱(chēng)為函數(shù)的保值區(qū)間。設(shè)
,試問(wèn)函數(shù)
在
上是否存在保值區(qū)間?若存在,請(qǐng)求出一個(gè)保值區(qū)間;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
,![]()
.
(Ⅰ)若
,求函數(shù)
在區(qū)間
上的最值;
(Ⅱ)若
恒成立,求
的取值范圍. 注:
是自然對(duì)數(shù)的底數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
.
(1)當(dāng)
時(shí),求函數(shù)
在
上的最大值;
(2)令
,若
在區(qū)間
上不單調(diào),求
的取值范圍;
(3)當(dāng)
時(shí),函數(shù)
的圖象與
軸交于兩點(diǎn)
,且
,又
是
的導(dǎo)函數(shù).若正常數(shù)
滿(mǎn)足條件
,證明:
.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com