分析:由題意知,f(x)是R上的偶函數,f(x-1)是一個奇函數,由奇函數的定義得f(x-1)+f(x+1)=0,再由f(1)=f(-1)=0,f(1)+f(3)+…+f(9)=f(1)=0.
解答:解:由題意知,f(x)是R上的偶函數,f(x-1)是一個奇函數,
∴f(x-1)=-f(-x-1)=-f(x+1),
∴f(x-1)+f(x+1)=0,
∴f(9)+f(7)=0,f(5)+f(3)=0,
由f(x-1)是奇函數 得,f(0-1)=0,即f(-1)=0,
又f(x)是R上的偶函數,
∴f(1)=f(-1)=0,
∴f(1)+f(3)+…+f(9)=f(1)=0,
故選 B.