(本題滿分為10分)
在四面體ABCD中作截面PQR,若PQ,CB的延長線交于M;RQ,DB的延長線交于N;RP,DC的延長線交于K,求證:M、N、K三點(diǎn)共線.![]()
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在組合體中,ABCD—A1B1C1D1是一個長方體,P—ABCD是一個四棱錐.AB=2,BC=3,點(diǎn)P
平面CC1D1D,且PC=PD=
.![]()
(1)證明:PD
平面PBC;
(2)求PA與平面ABCD所成的角的正切值;
(3)若
,當(dāng)a為何值時,PC//平面
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)
如圖4,已知四棱錐
,底面
是正方形,
面
,點(diǎn)
是
的中點(diǎn),點(diǎn)
是
的中點(diǎn),連接
,![]()
.![]()
(1)求證:
面
;
(2)若
,
,求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分l2分) 如圖,在多面體ABCDEF中,ABCD為菱形,
ABC=60
,EC
面ABCD,F(xiàn)A
面ABCD,G為BF的中點(diǎn),若EG//面ABCD.![]()
(I)求證:EG
面ABF;
(Ⅱ)若AF=AB,求二面角B—EF—D的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
如圖,在平行四邊形
中,
,將它們沿對角線
折起,折后的點(diǎn)
變?yōu)?img src="http://thumb.zyjl.cn/pic5/tikupic/cd/4/dqotb1.png" style="vertical-align:middle;" />,且
.
(Ⅰ)求證:平面
平面
;
(Ⅱ)
為線段
上的一個動點(diǎn),當(dāng)線段
的長為多少時,
與平面
所成的角為
?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)如圖,正三棱柱ABC—A1B1C1中,D是BC的中點(diǎn),AA1=AB=1.![]()
(I)求證:A1C//平面AB1D;
(II)求二面角B—AB1—D的大小;
(III)求點(diǎn)C到平面AB1D的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)如圖所示,四棱錐
中,
為正方形,
分別是線段
的中點(diǎn). 求證:
(1)
//平面
;
(2)平面
⊥平面
.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)在四棱錐
中,
平面
,
,
,
.
(Ⅰ)證明
;
(Ⅱ)求二面角
的正弦值;
(Ⅲ)設(shè)
為棱
上的點(diǎn),滿足異面直線
與
所成的角為
,求
的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分) 如圖,已知平面
∩平面
=AB,PQ⊥
于Q,PC⊥
于C,CD⊥
于D.![]()
(1)求證:P、C、D、Q四點(diǎn)共面;
(2)求證:QD⊥AB.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com