如圖,F1、F2分別是橢圓C:
=1(a>b>0)的左、右焦點,A是橢圓C的頂點,B是直線AF2與橢圓C的另一個交點,∠F1AF2=60°.![]()
(1)求橢圓C的離心率;
(2)已知△AF1B的面積為40
,求a,b的值.
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,動點
到兩定點
、
構(gòu)成
,且
,設(shè)動點
的軌跡為
。![]()
(1)求軌跡
的方程;
(2)設(shè)直線
與
軸交于點
,與軌跡
相交于點
,且
,求
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
我們把離心率為e=的雙曲線
(a>0,b>0)稱為黃金雙曲線.如圖,
是雙曲線的實軸頂點,
是虛軸的頂點,
是左右焦點,
在雙曲線上且過右焦點
,并且
軸,給出以下幾個說法:![]()
①雙曲線x2-
=1是黃金雙曲線;
②若b2=ac,則該雙曲線是黃金雙曲線;
③如圖,若∠F1B1A2=90°,則該雙曲線是黃金雙曲線;
④如圖,若∠MON=90°,則該雙曲線是黃金雙曲線.
其中正確的是( )
| A.①②④ | B.①②③ | C.②③④ | D.①②③④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C的對稱中心為原點O,焦點在x軸上,左右焦點分別為
和
,且|![]()
|=2,
點(1,
)在該橢圓上.
(1)求橢圓C的方程;
(2)過
的直線
與橢圓C相交于A,B兩點,若
A
B的面積為
,求以
為圓心且與直線
相切圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知E(2,2)是拋物線C:y2=2px上一點,經(jīng)過點(2,0)的直線l與拋物線C交于A,B兩點(不同于點E),直線EA,EB分別交直線x=-2于點M,N.
(1)求拋物線方程及其焦點坐標;
(2)已知O為原點,求證:∠MON為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)點P是圓x2+y2=4上任意一點,由點P向x軸作垂線PP0,垂足為P0,且
=![]()
.
(1)求點M的軌跡C的方程;
(2)設(shè)直線l:y=kx+m(m≠0)與(1)中的軌跡C交于不同的兩點A,B.
若直線OA,AB,OB的斜率成等比數(shù)列,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知圓C與兩圓x2+(y+4)2=1,x2+(y-2)2=1外切,圓C的圓心軌跡方程為L,設(shè)L上的點與點M(x,y)的距離的最小值為m,點F(0,1)與點M(x,y)的距離為n.
(1)求圓C的圓心軌跡L的方程.
(2)求滿足條件m=n的點M的軌跡Q的方程.
(3)在(2)的條件下,試探究軌跡Q上是否存在點B(x1,y1),使得過點B的切線與兩坐標軸圍成的三角形的面積等于
.若存在,請求出點B的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知
的三個頂點都在拋物線
上,且拋物線的焦點
滿足
,若
邊上的中線所在直線
的方程為
(
為常數(shù)且
).
(1)求
的值;
(2)
為拋物線的頂點,
,
,
的面積分別記為
,
,
,求證:
為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在直角坐標系中,已知△PAB的周長為8,且點A,B的坐標分別為(-1,0),(1,0).![]()
(1)試求頂點P的軌跡C1的方程;
(2)若動點C(x1,y1)在軌跡C1上,試求動點Q
的軌跡C2的方程.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com