【題目】甲乙兩人玩卡片游戲:他們手里都拿著分別標有數字1,2,3,4,5,6的6張卡片,各自從自己的卡片中隨機抽出1張,規定兩人誰抽出的卡片上的數字大,誰就獲勝,數字相同則為平局.
(1)求甲獲勝的概率.
(2)現已知他們都抽出了標有數字6的卡片,為了分出勝負,他們決定從手里剩下的卡片中再各自隨機抽出1張,若他們這次抽出的卡片上數字之和為偶數,則甲獲勝,否則乙獲勝.請問:這個規則公平嗎,為什么 ?
科目:高中數學 來源: 題型:
【題目】已知各項為正數的數列{an}的前n項和為Sn , 且滿足
(Ⅰ)求證:{an}為等差數列,并求數列{an}的通項公式;
(Ⅱ)設
,求證:
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設f(x)是定義在R上的函數,對m,n∈R,恒有f(m+n)=f(m)·f(n)(f(m)≠0,f(n)≠0),且當x>0時,0<f(x)<1.
(1)求證f(0)=1;
(2)求證x∈R時,恒有f(x)>0;
(3)求證f(x)在R上是減函數.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知奇函數f(x)=
的定義域為R,其中g(x)為指數函數,且過定點(2,9).
(1)求函數f(x)的解析式;
(2)若對任意的t∈[0,5],不等式f(t2+2t+k)+f(-2t2+2t-5)>0恒成立,求實數k的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知
,其中向量
(x∈R),
(1)求函數y=f(x)的單調遞增區間;
(2)在△ABC中,角A、B、C的對邊分別為a、b、c,已知f (A)=2,a=
,b=
,求邊長c的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知a>0,b>0,函數f(x)=|x+a|+|2x﹣b|的最小值為1.
(1)求證:2a+b=2;
(2)若a+2b≥tab恒成立,求實數t的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】近年來,“共享單車”的出現為市民“綠色出行”提供了極大的方便,某共享單車公司“Mobike”計劃在甲、乙兩座城市共投資120萬元,根據行業規定,每個城市至少要投資40萬元,由前期市場調研可知:甲城市收益P與投入
(單位:萬元)滿足
,乙城市收益Q與投入
(單位:萬元)滿足
,設甲城市的投入為
(單位:萬元),兩個城市的總收益為
(單位:萬元).
(1)當甲城市投資50萬元時,求此時公司總收益;
(2)試問如何安排甲、乙兩個城市的投資,才能使總收益最大?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com