已知曲線
:
,數(shù)列
的首項(xiàng)
,且
當(dāng)
時(shí),點(diǎn)
恒在曲線
上,數(shù)列{
}滿足![]()
(1)試判斷數(shù)列
是否是等差數(shù)列?并說(shuō)明理由;
(2)求數(shù)列
和
的通項(xiàng)公式;
(3)設(shè)數(shù)列
滿足
,試比較數(shù)列
的前
項(xiàng)和
與
的大小.
(1)數(shù)列{
}是公差為
的等差數(shù)列
(2)
,
(3)根據(jù)通項(xiàng)公式的特點(diǎn),采用裂項(xiàng)法來(lái)求和,并能比較大小。
解析試題分析:解;(1)∵當(dāng)
時(shí),點(diǎn)
恒在曲線C上
1分![]()
由
得
當(dāng)
時(shí),![]()
![]()
![]()
5分
∴數(shù)列{
}是公差為
的等差數(shù)列. 6分
(2)![]()
8分
由
得
10分
(3)
12分![]()
]![]()
14分
考點(diǎn):等差數(shù)列,等比數(shù)列
點(diǎn)評(píng):解決的關(guān)鍵是利用數(shù)列的概念以及裂項(xiàng)法求和進(jìn)而比較大小,屬于基礎(chǔ)題。
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖所示,流程圖給出了無(wú)窮等差整數(shù)列
,
時(shí),輸出的
時(shí),輸出的
(其中d為公差)![]()
(I)求數(shù)列
的通項(xiàng)公式;
(II)是否存在最小的正數(shù)m,使得
成立?若存在,求出m的值,若不存在,請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)數(shù)列
,且數(shù)列
是等差數(shù)列,
是等比數(shù)列.
(1)求數(shù)列
的通項(xiàng)公式;
(2)設(shè)數(shù)列
的前
項(xiàng)和為
,求
的表達(dá)式;
(3)數(shù)列
滿足![]()
,求數(shù)列
的最大項(xiàng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知二次函數(shù)
,且不等式
對(duì)任意的實(shí)數(shù)
恒成立,數(shù)列
滿足
,![]()
.
(1)求
的值;
(2)求數(shù)列
的通項(xiàng)公式;
(3)求證
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列{an}中,a2=1,前n項(xiàng)和為Sn,且
.
(1)求a1,a3;
(2)求證:數(shù)列{an}為等差數(shù)列,并寫出其通項(xiàng)公式;
(3)設(shè)
,試問(wèn)是否存在正整數(shù)p,q(其中1<p<q),使b1,bp,bq成等比數(shù)列?若存在,求出所有滿足條件的數(shù)組(p,q);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)各項(xiàng)均為正實(shí)數(shù)的數(shù)列
的前
項(xiàng)和為
,且滿足
(
).
(Ⅰ)求數(shù)列
的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列
的通項(xiàng)公式為
(
),若
,
,
(
)成等差數(shù)列,求
和
的值;
(Ⅲ)證明:存在無(wú)窮多個(gè)三邊成等比數(shù)列且互不相似的三角形,其三邊長(zhǎng)為數(shù)列
中的三項(xiàng)
,
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
數(shù)列{
}中,a1=3,
,
(1)求a1、a2、a3、a4;
(2)用合情推理猜測(cè)
關(guān)于n的表達(dá)式(不用證明);
(3)用合情推理猜測(cè){
}是什么類型的數(shù)列并證明;
(4)求{
}的前n項(xiàng)的和。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分14分)
設(shè)數(shù)列{
}的前n項(xiàng)和為
,且
=1,
,數(shù)列{
}滿足
,點(diǎn)P(
,
)在直線x―y+2=0上,
.
(1)求數(shù)列{
},{
}的通項(xiàng)公式;
(2)設(shè)
,求數(shù)列{
}的前n項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列
前
項(xiàng)和
滿足
,等差數(shù)列
滿足![]()
(1)求數(shù)列![]()
的通項(xiàng)公式
(2)設(shè)
,數(shù)列
的前
項(xiàng)和為
,問(wèn)
的最小正整數(shù)n是多少?
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com