在平面直角坐標(biāo)系中,直線
的參數(shù)方程為
(
為參數(shù)).若以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,則曲線C的極坐標(biāo)方程為
.
(Ⅰ) 求曲線C的直角坐標(biāo)方程;
(Ⅱ) 求直線
被曲線
所截得的弦長(zhǎng).
(Ⅰ) (x-
)2+(y-
)2=
。
(Ⅱ)∣MN∣=∣t1-t2∣=
=
。
解析試題分析:(Ⅰ)由
得:r=cosq+sinq
兩邊同乘以r得:r2=rcosq+rsinq
\x2+y2-x-y=0 即(x-
)2+(y-
)2=
5分
(Ⅱ) 將直線參數(shù)方程代入圓C的方程得: 5t2-21t+20=0
\t1+t2=
, t1t2=4
\∣MN∣=∣t1-t2∣=
=
10分
考點(diǎn):本題主要考查簡(jiǎn)單曲線的極坐標(biāo)方程,參數(shù)方程的應(yīng)用。
點(diǎn)評(píng):中檔題,作為選考內(nèi)容,難度不大,關(guān)鍵是掌握極坐標(biāo)方程與直角坐標(biāo)方程的互化公式。(II)小題,典型的參數(shù)方程的應(yīng)用問(wèn)題,通過(guò)“代入,整理,應(yīng)用韋達(dá)定理”,求得線段長(zhǎng)度。
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓
:![]()
過(guò)點(diǎn)
,上、下焦點(diǎn)分別為
、
,
向量
.直線
與橢圓交于
兩點(diǎn),線段
中點(diǎn)為
.
(1)求橢圓
的方程;
(2)求直線
的方程;
(3)記橢圓在直線
下方的部分與線段
所圍成的平面區(qū)域(含邊界)為
,若曲線
與區(qū)域
有公共點(diǎn),試求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知曲線
,![]()
(1)化
的方程為普通方程,并說(shuō)明它們分別表示什么曲線?
(2)若
上的點(diǎn)P對(duì)應(yīng)的參數(shù)為
,Q為
上的動(dòng)點(diǎn),求PQ的中點(diǎn)M到直線
的距離的最小值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知
、
分別為橢圓
:
的上、下焦點(diǎn),其中
也是拋物線
:
的焦點(diǎn),點(diǎn)
是
與
在第二象限的交點(diǎn),且
。![]()
(Ⅰ)求橢圓的方程;
(Ⅱ)已知點(diǎn)
(1,3)和圓
:
,過(guò)點(diǎn)
的動(dòng)直線
與圓
相交于不同的兩點(diǎn)
,在線段
取一點(diǎn)
,滿足:
,
(
且
)。
求證:點(diǎn)
總在某定直線上。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓
過(guò)點(diǎn)
,其長(zhǎng)軸、焦距和短軸的長(zhǎng)的平方依次成等差數(shù)列.直線
與
軸正半軸和
軸分別交于點(diǎn)
、
,與橢圓分別交于點(diǎn)
、
,各點(diǎn)均不重合且滿足![]()
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若
,試證明:直線
過(guò)定點(diǎn)并求此定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
橢圓
的右焦點(diǎn)為
,右準(zhǔn)線為
,離心率為
,點(diǎn)
在橢圓上,以
為圓心,
為半徑的圓與
的兩個(gè)公共點(diǎn)是
.![]()
(1)若
是邊長(zhǎng)為
的等邊三角形,求圓的方程;
(2)若
三點(diǎn)在同一條直線
上,且原點(diǎn)到直線
的距離為
,求橢圓方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知平面上動(dòng)點(diǎn)P(
)及兩個(gè)定點(diǎn)A(-2,0),B(2,0),直線PA、PB的斜率分別為
、
且![]()
(I)求動(dòng)點(diǎn)P所在曲線C的方程。
(II)設(shè)直線
與曲線C交于不同的兩點(diǎn)M、N,當(dāng)OM⊥ON時(shí),求點(diǎn)O到直線
的距離。(O為坐標(biāo)原點(diǎn))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知雙曲線
的離心率為
,右準(zhǔn)線方程為
。
(Ⅰ)求雙曲線C的方程;
(Ⅱ)已知直線
與雙曲線C交于不同的兩點(diǎn)A,B,且線段AB的中點(diǎn)在圓
上,求實(shí)數(shù)m的值。
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com