【題目】已知函數
.
(1)若
,求
的最大值;
(2)若
恒成立,求實數
的取值范圍.
【答案】(1)
;(2)
。
【解析】
(1)根據導數可判斷出函數
在區間[1,e]上單調遞增,故可得最大值.(2)由f(x)≤0分離參數可得
在區間[1,e]上恒成立,令
,根據導數求得函數
的最小值后可得所求的范圍.
(1)當a=1時,f(x)=x+ln x,
∴f′(x)=1+
=
.
∵ x∈[1,e],
∴ f′(x)>0,
∴ f(x)在[1,e]上為增函數,
∴ f(x)max=f(e)=e+1.
(2)∵ f(x)≤0即ax+ln x≤0對x∈[1,e]恒成立,
∴ a≤-
,x∈[1,e].
令g(x)=-
,x∈[1,e],
則g′(x)=
,
∵ x∈[1,e],
∴ g′(x)≤0,當且僅當x=e時等號成立,
∴ g(x)在[1,e]上遞減,
∴ g(x)min=g(e)=
,
∴ a≤-
.
∴實數a的取值范圍為
.
科目:高中數學 來源: 題型:
【題目】已知函數
(
,且
).
(Ⅰ)求函數
的單調區間;
(Ⅱ)求函數
在
上的最大值.
【答案】(Ⅰ)
的單調增區間為
,單調減區間為
.(Ⅱ)當
時,
;當
時,
.
【解析】【試題分析】(I)利用
的二階導數來研究求得函數
的單調區間.(II) 由(Ⅰ)得
在
上單調遞減,在
上單調遞增,由此可知
.利用導數和對
分類討論求得函數在
不同取值時的最大值.
【試題解析】
(Ⅰ)
,
設
,則
.
∵
,
,∴
在
上單調遞增,
從而得
在
上單調遞增,又∵
,
∴當
時,
,當
時,
,
因此,
的單調增區間為
,單調減區間為
.
(Ⅱ)由(Ⅰ)得
在
上單調遞減,在
上單調遞增,
由此可知
.
∵
,
,
∴
.
設
,
則
.
∵當
時,
,∴
在
上單調遞增.
又∵
,∴當
時,
;當
時,
.
①當
時,
,即
,這時,
;
②當
時,
,即
,這時,
.
綜上,
在
上的最大值為:當
時,
;
當
時,
.
[點睛]本小題主要考查函數的單調性,考查利用導數求最大值. 與函數零點有關的參數范圍問題,往往利用導數研究函數的單調區間和極值點,并結合特殊點,從而判斷函數的大致圖像,討論其圖象與
軸的位置關系,進而確定參數的取值范圍;或通過對方程等價變形轉化為兩個函數圖象的交點問題.
【題型】解答題
【結束】
22
【題目】選修4-4:坐標系與參數方程
在直角坐標系
中,圓
的普通方程為
. 在以坐標原點為極點,
軸正半軸為極軸的極坐標系中,直線
的極坐標方程為
.
(Ⅰ) 寫出圓
的參數方程和直線
的直角坐標方程;
( Ⅱ ) 設直線
與
軸和
軸的交點分別為
,
為圓
上的任意一點,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在以下命題中,不正確的個數為( )
①
是
,b共線的充要條件;②若
∥
,則存在唯一的實數λ,使
=λ
;③對空間任意一點O和不共線的三點A,B,C,若
=2
-2
-
,則P,A,B,C四點共面;④若{
,
,
}為空間的一個基底,則{
+
,
+
,
+
}構成空間的另一個基底;⑤ |(
·
)·
|=|
|·|
|·|
|.
A. 2
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】探究函數
的圖像時,列表如下:
x | … | 0.5 | 1 | 1.5 | 1.7 | 1.9 | 2 | 2.1 | 2.2 | 2.3 | 3 | 4 | 5 | 7 | … |
y | … | 8.5 | 5 | 4.17 | 4.05 | 4.005 | 4 | 4.005 | 4.02 | 4.04 | 4.3 | 5 | 5.8 | 7.57 | … |
觀察表中y值隨x值的變化情況,完成以下的問題:
(1)函數
的遞減區間是 ,遞增區間是 ;
(2)若對任意的
恒成立,試求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ln(x+1)+
(a∈R).
(1)當a=1時,求函數f(x)在點(0,f(0))處的切線方程;
(2)討論函數f(x)的極值;
(3)求證:ln(n+1)>
(n∈N*).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨著電子產品的不斷更新完善,更多的電子產品逐步走入大家的世界,給大家帶來了豐富多彩的生活,但也帶來了一些負面的影響,某公司隨即抽取
人對某電子產品是否對日常生活有益進行了問卷調查,并對參與調查的
人中的年齡層次以及意見進行了分類,得到的數據如下表所示:
|
| 總計 | |
認為某電子產品對生活有益 |
|
|
|
認為某電子產品對生活無益 |
|
|
|
總計 |
|
|
|
(1)根據表中的數據,能否在犯錯誤的概率不超過
的前提下,認為電子產品的態度與年齡有關系?
(2)為了答謝參與問卷調查的人員,該公司對參與本次問卷調查的人員進行抽獎活動,獎金額以及發放的概率如下:
獎金額 |
|
|
|
概率 |
|
|
|
現在甲、乙兩人參與了抽獎活動,記兩人獲得的獎金總金額為
,求
的分布列和數學期望.
參與公式: ![]()
臨界值表:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓
:
的離心率為
,直線
交橢圓
于
、
兩點,橢圓
的右頂點為
,且滿足
.
(1)求橢圓
的方程;
(2)若直線
與橢圓
交于不同兩點
、
,且定點
滿足
,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】小明在石家莊市某物流派送公司找到了一份派送員的工作,該公司給出了兩種日薪薪酬方案.甲方案:底薪100元,每派送一單獎勵1元;乙方案:底薪140元,每日前55單沒有獎勵,超過55單的部分每單獎勵12元.
(1)請分別求出甲、乙兩種薪酬方案中日薪
(單位:元)與送貨單數
的函數關系式;
(2)根據該公司所有派送員100天的派送記錄,發現派送員的日平均派送單數與天數滿足以下表格:
日均派送單數 | 52 | 54 | 56 | 58 | 60 |
頻數(天) | 20 | 30 | 20 | 20 | 10 |
回答下列問題:
①根據以上數據,設每名派送員的日薪為
(單位:元),試分別求出這100天中甲、乙兩種方案的日薪
平均數及方差;
②結合①中的數據,根據統計學的思想,幫助小明分析,他選擇哪種薪酬方案比較合適,并說明你的理由.
(參考數據:
,
,
,
,
,
,
,
,
)
【答案】(1)
;(2)見解析
【解析】試題分析:(1)甲方案:底薪100元,每派送一單獎勵1元;乙方案:底薪140元,每日前55單沒有獎勵,超過55單的部分每單獎勵12元. 求出甲、乙兩種薪酬方案中日薪
(單位:元)與送貨單數
的函數關系式;
①、由表格可知,甲方案中,日薪為152元的有20天,日薪為154元的有30天,日薪為156元的有20天,日薪為158元的有20天,日薪為160元的有10天,由此可求出這100天中甲方案的日薪
平均數及方差:同理可求出這100天中乙兩種方案的日薪
平均數及方差,
②不同的角度可以有不同的答案
試題解析:((1)甲方案中派送員日薪
(單位:元)與送貨單數
的函數關系式為:
,
乙方案中派送員日薪
(單位:元)與送單數
的函數關系式為:
,
(2)①、由表格可知,甲方案中,日薪為152元的有20天,日薪為154元的有30天,日薪為156元的有20天,日薪為158元的有20天,日薪為160元的有10天,則
,
,
乙方案中,日薪為140元的有50天,日薪為152元的有20天,日薪為176元的有20天,日薪為200元的有10天,則
,
![]()
②、答案一:
由以上的計算可知,雖然
,但兩者相差不大,且
遠小于
,即甲方案日薪收入波動相對較小,所以小明應選擇甲方案.
答案二:
由以上的計算結果可以看出,
,即甲方案日薪平均數小于乙方案日薪平均數,所以小明應選擇乙方案.
【題型】解答題
【結束】
20
【題目】已知橢圓
:
的左、右焦點分別為
,
,且離心率為
,
為橢圓上任意一點,當
時,
的面積為1.
(1)求橢圓
的方程;
(2)已知點
是橢圓
上異于橢圓頂點的一點,延長直線
,
分別與橢圓交于點
,
,設直線
的斜率為
,直線
的斜率為
,求證:
為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知
三個內角
所對的邊分別是
,若
.
(1)求角
;
(2)若
的外接圓半徑為2,求
周長的最大值.
【答案】(1)
;(2)
.
【解析】試題分析:(1)由正弦定理將邊角關系化為邊的關系
,再根據余弦定理求角
,(2)先根據正弦定理求邊,用角表示周長,根據兩角和正弦公式以及配角公式化為基本三角函數,最后根據正弦函數性質求最大值.
試題解析:(1)由正弦定理得
,
∴
,∴
,即![]()
因為
,則
.
(2)由正弦定理![]()
∴
,
,
,
∴周長![]()
![]()
![]()
![]()
![]()
![]()
∵
,∴![]()
∴當
即
時![]()
∴當
時,
周長的最大值為
.
【題型】解答題
【結束】
18
【題目】經調查,3個成年人中就有一個高血壓,那么什么是高血壓?血壓多少是正常的?經國際衛生組織對大量不同年齡的人群進行血壓調查,得出隨年齡變化,收縮壓的正常值變化情況如下表:
![]()
其中:
,
, ![]()
![]()
(1)請畫出上表數據的散點圖;
(2)請根據上表提供的數據,用最小二乘法求出
關于
的線性回歸方程
;(
的值精確到0.01)
(3)若規定,一個人的收縮壓為標準值的0.9~1.06倍,則為血壓正常人群;收縮壓為標準值的1.06~1.12倍,則為輕度高血壓人群;收縮壓為標準值的1.12~1.20倍,則為中度高血壓人群;收縮壓為標準值的1.20倍及以上,則為高度高血壓人群.一位收縮壓為180mmHg的70歲的老人,屬于哪類人群?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com