(2012•廣東)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,滿足
,且a1,a2+5,a3成等差數(shù)列.
(1)求a1的值;
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)證明:對(duì)一切正整數(shù)n,有
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)數(shù)列{an}是一個(gè)公差為
的等差數(shù)列,已知它的前10項(xiàng)和為
,且a1,a2,a4 成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若
,求數(shù)列
的前
項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知{an}是正數(shù)組成的數(shù)列,a1=1,且點(diǎn)(
,an+1)( n ∈N*)在函數(shù)y=x2+1的圖象上.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列
滿足b1=1,
,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列{an}滿足an+1=
(n∈N*),且a1=
.
(1)求證:數(shù)列
是等差數(shù)列,并求an.
(2)令bn=
(n∈N*),求數(shù)列{bn}的前n項(xiàng)和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(2013·天津模擬)已知數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=2an-2(n∈N*),數(shù)列{bn}滿足b1=1,且點(diǎn)P(bn,bn+1)(n∈N*)在直線y=x+2上.
(1)求數(shù)列{an},{bn}的通項(xiàng)公式.
(2)求數(shù)列{an·bn}的前n項(xiàng)和Dn.
(3)設(shè)cn=an·sin2
-bn·cos2
(n∈N*),求數(shù)列{cn}的前2n項(xiàng)和T2n.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知等差數(shù)列
的前
項(xiàng)和為
,公差
,且
.
(1)求數(shù)列
的通項(xiàng)公式;
(2)設(shè)數(shù)列
是首項(xiàng)為1,公比為
的等比數(shù)列,求數(shù)列
的前n項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)數(shù)列
的前
項(xiàng)和為
.已知
,
=an+1-
n2-n-
(
)
(1) 求
的值;
(2) 求數(shù)列
的通項(xiàng)公式;
(3) 證明:對(duì)一切正整數(shù)
,有
+
+…+
<
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)
的公差大于零的等差數(shù)列,已知
,
.
(1)求
的通項(xiàng)公式;
(2)設(shè)
是以函數(shù)
的最小正周期為首項(xiàng),以
為公比的等比數(shù)列,求數(shù)列
的前
項(xiàng)和
.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com