【題目】十九世紀末:法國學者貝特朗在研究幾何概型時提出了“貝特朗悖論”,即“在一個圓內任意選一條弦,這條弦的弦長長于這個圓的內接等邊三角形邊長的概率是多少?”貝特朗用“隨機半徑”“隨機端點”“隨機中點”三個合理的求解方法,但結果都不相同.該悖論的矛頭直擊概率概念本身,強烈地刺激了概率論基礎的嚴格化.已知“隨機端點”的方法如下:設
為圓
上一個定點,在圓周上隨機取一點
,連接
,所得弦長
大于圓
的內接等邊三角形邊長的概率.則由“隨機端點”求法所求得的概率為( )
A.
B.
C.
D.![]()
科目:高中數學 來源: 題型:
【題目】已知{an}為等差數列,前n項和為Sn(n∈N*),{bn}是首項為2的等比數列,且公比大于0,b2+b3=12,b3=a4-2a1,S11=11b4.
(1)求{an}和{bn}的通項公式;
(2)求數列{a2nbn}的前n項和(n∈N*).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】過拋物線
)的焦點F且斜率為
的直線交拋物線C于M,N兩點,且
.
(1)求p的值;
(2)拋物線C上一點
,直線
(其中
)與拋物線C交于A,B兩個不同的點(A,B均與點Q不重合).設直線QA,QB的斜率分別為
,
.直線l是否過定點?如果是,請求出所有定點;如果不是,請說明理由;
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若函數y=f(x)(x∈R)滿足f(1+x)=f(1-x)且x∈[-1,1]時,f(x)=1-x2,函數g(x)=
則函數h(x)=f(x)-g(x)在區間[-5,5]內的零點的個數為
A. 7 B. 8 C. 9 D. 10
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,
,
,E為AB的中點將
沿直線DE折起到
的位置,使平面
平面BCDE.
![]()
(1)證明:
平面PDE.
(2)設F為線段PC的中點,求四面體D-PEF的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,已知⊙O的半徑是1,點C在直徑AB的延長線上,BC=1,點P是⊙O上半圓上的一個動點,以PC為邊作等邊三角形PCD,且點D與圓心分別在PC的兩側.
(1)若∠POB=θ,試將四邊形OPDC的面積y表示為關于θ的函數;
(2)求四邊形OPDC面積的最大值.
![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知某射擊運動員,每次擊中目標的概率都是0.8.現采用隨機模擬的方法估計該運動員射擊4次至少擊中3次的概率:先由計算器算出0到9之間取整數值的隨機數,指定0,1表示沒有擊中目標,2,3,4,5,6,7,8,9表示擊中目標;因為射擊4次,故以每4個隨機數為一組,代表射擊4次的結果.經隨機模擬產生了如下20組隨機數:
5727 0293 7140 9857 0347
4373 8636 9647 1417 4698
0371 6233 2616 8045 6011
3661 9597 7424 6710 4281
據此估計,該射擊運動員射擊4次至少擊中3次的概率為_____.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com