【題目】已知函數f(x)=sin2x﹣
cos2x
(1)求函數的最小正周期及函數圖象的對稱中心;
(2)若不等式﹣2<f(x)﹣m<2在x∈[
]上恒成立,求實數m的取值范圍.
【答案】
(1)解:f(x)=sin2x﹣
cos2x=
.
函數的周期為T=
.
由2x
,得x=
,
∴函數的對稱中心為(
),k∈Z
(2)解:由﹣2<f(x)﹣m<2在x∈[
]上恒成立,
得f(x)﹣2<m<f(x)+2在x∈[
]上恒成立,
∵x∈[
],∴2x
∈[
],則f(x)∈[1,2],
∴0<m<3.
∴實數m的取值范圍是(0,3)
【解析】利用輔助角公式化積.(1)直接利用周期公式求得周期,再由相位的終邊落在x軸上求得函數圖象的對稱中心;(2)由x得范圍求得f(x)的范圍,把﹣2<f(x)﹣m<2在x∈[
]上恒成立轉化為f(x)﹣2<m<f(x)+2在x∈[
]上恒成立得答案.
科目:高中數學 來源: 題型:
【題目】為推行“新課堂”教學法,某化學老師分別用傳統教學和“新課堂”兩種不同的教學方式,在甲、乙兩個平行班進行教學實驗,為了解教學效果,期中考試后,分別從兩個班級中各隨機抽取
名學生的成績進行統計,作出的莖葉圖如下圖,記成績不低于
分者為“成績優良”.
![]()
(1)分別計算甲、乙兩班
個樣本中,化學分數前十的平均分,并據此判斷哪種教學方式的教學效果更
佳;
(2)甲、乙兩班
個樣本中,成績在
分以下(不含
分)的學生中任意選取
人,求這
人來自不同班級的概率;
(3)由以上統計數據填寫下面
列聯表,并判斷能否在犯錯誤的概率不超過
的前提下認為“成績優良與教學方式有關”?
甲班 | 乙班 | 總計 | |
成績優良 | |||
成績不優良 | |||
總計 |
附: ![]()
獨立性檢驗臨界值表:
|
|
|
|
|
|
|
|
|
|
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱錐P-ABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D為線段AC的中點,E為線段PC上一點.
![]()
(1)求證:PA⊥BD;
(2)求證:平面BDE⊥平面PAC;
(3)當PA∥平面BDE時,求三棱錐E-BCD的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】從某校高二年級學生中隨機抽取了20名學生,將他們的期中考試數學成績(滿分100分,成績均為不低于40分的整數)分成六段:[40,50),[50,60),…,[90,100]后得到如圖所示的頻率分布直方圖.
![]()
求圖中實數a的值;
若該校高二年級共有學生600名,試估計該校高二年級期中考試數學成績不低于60分的人數;
若從數學成績在[60,70)與[90,100]兩個分數段內的學生中隨機選取2名學生,求這2名學生的數學成績之差的絕對值大于10的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點
,動點
,
分別在
軸,
軸上運動,
,
為平面上一點,
,過點
作
平行于
軸交
的延長線于點
.
(Ⅰ)求點
的軌跡曲線
的方程;
(Ⅱ)過
點作
軸的垂線
,平行于
軸的兩條直線
,
分別交曲線
于
,
兩點(直線
不過
),交
于
,
兩點.若線段
中點的軌跡方程為
,求
與
的面積之比.
![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】交強險是車主必須為機動車購買的險種,若普通6座以下私家車投保交強險第一年的費用(基準保費)統一為
元,在下一年續保時,實行的是費率浮動機制,保費與上一年度車輛發生道路交通事故的情況相聯系,發生交通事故的次數越多,費率也就是越高,具體浮動情況如下表:
交強險浮動因素和浮動費率比率表 | ||
浮動因素 | 浮動比率 | |
| 上一個年度未發生有責任道路交通事故 | 下浮10% |
| 上兩個年度未發生有責任道路交通事故 | 下浮20% |
| 上三個及以上年度未發生有責任道路交通事故 | 下浮30% |
| 上一個年度發生一次有責任不涉及死亡的道路交通事故 | 0% |
| 上一個年度發生兩次及兩次以上有責任道路交通事故 | 上浮10% |
| 上一個年度發生有責任道路交通死亡事故 | 上浮30% |
某機構為了 某一品牌普通6座以下私家車的投保情況,隨機抽取了60輛車齡已滿三年的該品牌同型號私家車的下一年續保時的情況,統計得到了下面的表格:
類型 |
|
|
|
|
|
|
數量 | 10 | 5 | 5 | 20 | 15 | 5 |
以這60輛該品牌車的投保類型的頻率代替一輛車投保類型的概率,完成下列問題:
(1)按照我國《機動車交通事故責任強制保險條例》汽車交強險價格的規定,
,記
為某同學家的一輛該品牌車在第四年續保時的費用,求
的分布列與數學期望;(數學期望值保留到個位數字)
(2)某二手車銷售商專門銷售這一品牌的二手車,且將下一年的交強險保費高于基本保費的車輛記為事故車,假設購進一輛事故車虧損5000元,一輛非事故車盈利10000元:
①若該銷售商購進三輛(車齡已滿三年)該品牌二手車,求這三輛車中至多有一輛事故車的概率;
②若該銷售商一次購進100輛(車齡已滿三年)該品牌二手車,求他獲得利潤的期望值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}滿足a1=﹣
,an+1=
(n∈N+)
(1)證明數列{
}是等差數列并求{an}的通項公式.
(2)數列{bn}滿足bn=
(n∈N+).求{bn}的前n項和Sn .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com