【題目】已知函數(shù)
.
(1)若
是
的極值點,試研究函數(shù)
的單調(diào)性,并求
的極值;
(2)若
在
上恒成立,求實數(shù)
的取值范圍.
【答案】(1)詳見解析;(2)
.
【解析】試題分析:(1)現(xiàn)求
,再由
是
的極值點,求得
的值,最后根據(jù)
得到函數(shù)
的單調(diào)性和極值;
(2)將不等式的恒成立問題轉(zhuǎn)化為求曲線
的最小值問題,對
分類討論,即可確定實數(shù)
的取值范圍.
試題解析:
(1)函數(shù)
,定義域為
,則
,
若
是
的極值點,則
,即
.
∴
,
.
令
,則
,令
,則
,
∴
在
上單調(diào)遞增,在
上單調(diào)遞減,
∴
在
處取得極小值,極小值為
.
(2)若
在
上恒成立,即
.
由(1)知
,
(i)當
時,即
在
上恒成立,即
在
上單調(diào)遞減,
則
,得
.
(ii)當
時,
時,
,
時,
,
若
,即
時,
在
上恒成立,
則
在
上單調(diào)遞減,∴
,即
時
恒成立,
若
,即
時,
時,
,
時,
.
即
在
上單調(diào)遞減,在
上單調(diào)遞增,
則
,得
.
綜上所述,實數(shù)
的取值范圍是
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P-ABCD的底面為矩形,AB=
,BC=1,E,F分別是AB,PC的中點,DE⊥PA.
(1)求證:EF∥平面PAD;
(2)求證:平面PAC⊥平面PDE.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=(x+1)e-x(e為自然對數(shù)的底數(shù)).
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)設(shè)函數(shù)φ(x)=xf(x)+tf′(x)+e-x,存在實數(shù)x1,x2∈[0,1],使得2φ(x1)<φ(x2)成立,求實數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,長方體
中,
,
,點
,
,
分別為
,
,
的中點,過點
的平面
與平面
平行,且與長方體的面相交,交線圍成一個幾何圖形.
![]()
(1)在圖中畫出這個幾何圖形(說明畫法,不需要說明理由);
(2)求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已經(jīng)函數(shù)
的定義域為
,設(shè)![]()
(1)試確定
的取值范圍,使得函數(shù)
在
上為單調(diào)函數(shù)
(2)求證![]()
(3)若不等式
(為
正整數(shù))對任意正實數(shù)
恒成立,求
的最大值.(解答過程可參考使用以下數(shù)據(jù)
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】把2支相同的晨光簽字筆,3支相同英雄鋼筆全部分給4名優(yōu)秀學(xué)生,每名學(xué)生至少1支,則不同的分法有( )
A. 24種 B. 28種 C. 32種 D. 36種
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】第三屆移動互聯(lián)創(chuàng)新大賽,于2017年3月~10月期間舉行,為了選出優(yōu)秀選手,某高校先在計算機科學(xué)系選出一種子選手
,再從全校征集出3位志愿者分別與
進行一場技術(shù)對抗賽,根據(jù)以往經(jīng)驗,
與這三位志愿者進行比賽一場獲勝的概率分別為
,且各場輸贏互不影響.
(1)求甲恰好獲勝兩場的概率;
(2)求甲獲勝場數(shù)的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某海產(chǎn)品經(jīng)銷商調(diào)查發(fā)現(xiàn),該海產(chǎn)品每售出
噸可獲利
萬元,每積壓
噸則虧損
萬元.根據(jù)往年的數(shù)據(jù),得到年需求量的頻率分布直方圖如圖所示,將頻率視為概率.
![]()
(1)請補齊
上的頻率分布直方圖,并依據(jù)該圖估計年需求量的平均數(shù);
(2)今年該經(jīng)銷商欲進貨
噸,以
(單位:噸,
)表示今年的年需求量,以
(單位:萬元)表示今年銷售的利潤,試將
表示為
的函數(shù)解析式;并求今年的年利潤不少于
萬元的概率.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com