【題目】在直角坐標系xOy中以O為極點,x軸正半軸為極軸建立坐標系.圓C1 , 直線C2的極坐標方程分別為ρ=4sinθ,ρcos(
)=2
.
(1)求C1與C2交點的極坐標;
(2)設P為C1的圓心,Q為C1與C2交點連線的中點,已知直線PQ的參數(shù)方程為
(t∈R為參數(shù)),求a,b的值.
【答案】
(1)解:圓C1,直線C2的直角坐標方程分別為 x2+(y﹣2)2=4,x+y﹣4=0,
解
得
或
,
∴C1與C2交點的極坐標為(4,
).(2
,
).
(2)解:由(1)得,P與Q點的坐標分別為(0,2),(1,3),
故直線PQ的直角坐標方程為x﹣y+2=0,
由參數(shù)方程可得y=
x﹣
+1,
∴
,
解得a=﹣1,b=2.
【解析】(1)先將圓C1 , 直線C2化成直角坐標方程,再聯(lián)立方程組解出它們交點的直角坐標,最后化成極坐標即可;(2)由(1)得,P與Q點的坐標分別為(0,2),(1,3),從而直線PQ的直角坐標方程為x﹣y+2=0,由參數(shù)方程可得y=
x﹣
+1,從而構(gòu)造關于a,b的方程組,解得a,b的值.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在直三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=2,AA1=6,點E、F分別在棱BB1、CC1上,且BE=
BB1 , C1F=
CC1 . ![]()
(1)求平面AEF與平面ABC所成角α的余弦值;
(2)若G為BC的中點,A1G與平面AEF交于H,且設
=
,求λ的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,角A,B,C所對的邊分別為a,b,c,(
a﹣sinC)cosB=sinBcosC,b=4
. ![]()
(1)求角B的大小;
(2)D為BC邊上一點,若AD=2,S△DAC=2
,求DC的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系
中,已知點
,直線
,設圓
的半徑為
,且圓心
在直線
上.
(
)若圓心
的坐標為
,過點
作圓
的切線,求切線的方程.
(
)若圓
上存在點
,使
,求圓心
的橫坐標
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列說法中不正確的序號為_______.
①若函數(shù)
在
上單調(diào)遞減,則實數(shù)
的取值范圍是
;
②函數(shù)
是偶函數(shù),但不是奇函數(shù);
③已知函數(shù)
的定義域為
,則函數(shù)
的定義域是
;
④若函數(shù)
在
上有最小值-4,(
,
為非零常數(shù)),則函數(shù)
在
上有最大值6.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4﹣5:不等式選講
已知函數(shù)f(x)=|x﹣2|﹣|x﹣5|.
(1)證明:﹣3≤f(x)≤3;
(2)求不等式f(x)≥x2﹣8x+15的解集.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖是一個幾何體的平面展開圖,其中四邊形ABCD為正方形,△PDC, △PBC, △PAB, △PDA為全等的等邊三角形,E、F分別為PA、PD的中點,在此幾何體中,下列結(jié)論中錯誤的為 ( )
![]()
A. 平面BCD⊥平面PAD B. 直線BE與直線AF是異面直線
C. 直線BE與直線CF共面 D. 面PAD與面PBC的交線與BC平行
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com