(08年宣武區(qū)質(zhì)量檢一文)(14分)
已知二次函數(shù)f(x)=
同時滿足:
①不等式f(x)
0的解集有且只有一個元素②在定義域內(nèi)存在0
,使得不等式
成立。設(shè)數(shù)列{
}的前n項和
.
(1) 求函數(shù)f(x)的表達式;
(2) 求數(shù)列{
}的通項公式;
設(shè)各項均不為零的數(shù)列{
}中,所有滿足
的整數(shù)i的個數(shù)稱為這個數(shù)列{
}的變號數(shù)。令
(n為正整數(shù)),求數(shù)列{
}的變號數(shù)。
科目:高中數(shù)學 來源: 題型:
(08年宣武區(qū)質(zhì)量檢一文)(14分)
已知圓O:
和定點A(2,1),由圓O外一點P(a,b)向圓O引切線PQ,切點為Q,且滿足![]()
(1) 求實數(shù)a、b間滿足的等量關(guān)系;
(2) 求線段PQ長的最小值;
(3) 若以P為圓心所做的圓P與圓Q有公共點,試求半徑取最小值時,圓P的方程。
![]()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(08年宣武區(qū)質(zhì)量檢一)(13分)
已知函數(shù)
![]()
(1) 若
在
上是減函數(shù),求
的最大值;
(2) 若
的單調(diào)遞減區(qū)間是
,求函數(shù)y=
圖像過點
的切線與兩坐標軸圍成圖形的面積。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(08年宣武區(qū)質(zhì)量檢一)(13分)
如圖,三棱錐P-ABC中,PC
平面ABC,PC=AC=2,
AB=BC,D是PB上一點,且CD
平面PAB
(1) 求證:AB
平面PCB;
(2) 求異面直線AP與BC所成角的大小;
(3) 求二面角C-PA-B 的大小的余弦值。
![]()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(08年宣武區(qū)質(zhì)量檢一)(13分)
已知向量m =
, 向量n = (2,0),且m與n所成角為
,
其中A、B、C是
的內(nèi)角。
(1) 求角B的大小;
(2) 求
的取值范圍。
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com