【題目】已知圓
為參數(shù)
和直線
其中
為參數(shù),
為直線
的傾斜角
.
(1)當(dāng)
時(shí),求圓上的點(diǎn)到直線
的距離的最小值;
(2)當(dāng)直線
與圓
有公共點(diǎn)時(shí),求
的取值范圍.
【答案】(1)
;(2)
.
【解析】試題分析:(1)圓
、直線
化為直角坐標(biāo)方程,求出圓心到直線的距離,再根據(jù)圓上點(diǎn)到直線的距離最小值一般為圓心到直線的距離減半徑可得結(jié)果;(2)把圓的參數(shù)方程化為直角坐標(biāo)方程,把直線的參數(shù)代入圓方程,根據(jù)判別式大于零求出傾斜角
的范圍.
試題解析:(1)當(dāng)
時(shí),直線
的直角坐標(biāo)方程為
,圓
的
圓心坐標(biāo)為(1,0),圓心到直線的距離
,圓
的半徑為1,故圓
上的點(diǎn)到直線
的距離的最小值為
.
(2)圓
的直角坐標(biāo)方程為
,將直線
的參數(shù)方程代入圓
的直
角坐標(biāo)方程,得
,這個(gè)關(guān)于
的一元二次方程有解,
故
,則
,即
或
.又
,故只能有
,
即
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場(chǎng)計(jì)劃銷售某種產(chǎn)品,現(xiàn)邀請(qǐng)生產(chǎn)該產(chǎn)品的甲、乙兩個(gè)廠家進(jìn)場(chǎng)試銷10天,兩個(gè)廠家提供的返利方案如下:甲廠家每天固定返利70元,且每賣出一件產(chǎn)品廠家再返利2元;乙廠家無固定返利,賣出40件以內(nèi)(含40件)的產(chǎn)品,每件產(chǎn)品廠家返利4元,超出40件的部分每件返利6元.經(jīng)統(tǒng)計(jì),兩個(gè)廠家10天的試銷情況莖葉圖如下:
![]()
(Ⅰ)現(xiàn)從廠家試銷的10天中抽取兩天,求這兩天的銷售量都大于40的概率;
(Ⅱ)若將頻率視作概率,回答以下問題:
(ⅰ)記乙廠家的日返利額為
(單位:元),求
的分布列和數(shù)學(xué)期望;
(ⅱ)商場(chǎng)擬在甲、乙兩個(gè)廠家中選擇一家長(zhǎng)期銷售,如果僅從日返利額的角度考慮,請(qǐng)利用所學(xué)的統(tǒng)計(jì)學(xué)知識(shí)為商場(chǎng)做出選擇,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在定義域內(nèi)給定區(qū)間[a,b]上存在x0(a<x0<b)滿足f(x0)=
,則稱函數(shù)y=f(x)在區(qū)間[a,b]上的“平均值函數(shù)”,x0是它的一個(gè)均值點(diǎn).若函數(shù)f(x)=﹣x2+mx+1是[﹣1,1]上的平均值函數(shù),則實(shí)數(shù)m的取值范圍是
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中正確的有( )
①命題x∈R,使sin x+cos x=
的否定是“對(duì)x∈R,恒有sin x+cos x≠
”;
②“a≠1或b≠2”是“a+b≠3”的充要條件;
③若曲線C上的所有點(diǎn)的坐標(biāo)都滿足方程f(x,y)=0,則稱方程f(x,y)=0是曲線C的方程;
④十進(jìn)制數(shù)66化為二進(jìn)制數(shù)是1 000 010(2) .
A.①②③④
B.①④
C.②③
D.③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,AC是圓O的直徑,點(diǎn)B在圓O上,
,
交
于
, ![]()
(1)證明:
;
(2) 求平面
與
所成的銳角二面角的余弦值.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在梯形
中,
,
,四邊形
為矩形,且
平面
,
.
(1)求證:
平面
;
(2)點(diǎn)
在線段
(含端點(diǎn))上運(yùn)動(dòng),當(dāng)點(diǎn)
在什么位置時(shí),平面
與平面
所成銳二面角最大,并求此時(shí)二面角的余弦值.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(Ⅰ)求過點(diǎn)
且與曲線
相切的直線方程;
(Ⅱ)設(shè)
,其中
為非零實(shí)數(shù),若
有兩個(gè)極值點(diǎn)
,且
,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
(
)的左、右焦點(diǎn)分別為
,
,點(diǎn)
在橢圓
上.
(1)求橢圓
的標(biāo)準(zhǔn)方程;
(2)是否存在斜率為2的直線
,使得當(dāng)直線
與橢圓
有兩個(gè)不同交點(diǎn)
時(shí),能在直線
上找到一點(diǎn)
,在橢圓
上找到一點(diǎn)
,滿足
?若存在,求出直線
的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義:如果函數(shù)f(x)在[a,b]上存在x1 , x2(a<x1<x2<b)滿足![]()
, ,則稱函數(shù)f(x)是[a,b]上的“雙中值函數(shù)”.已知函數(shù)f(x)=x3﹣x2+a是[0,a]上的“雙中值函數(shù)”,則實(shí)數(shù)a的取值范圍是( )
A.(
,
)
B.(
,3)
C.(
, 1)
D.(
, 1)
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com