(本小題滿分14分)(注意:在試題卷上作答無(wú)效)
已知曲線
,從
上的點(diǎn)
作
軸的垂線,交
于點(diǎn)
,再?gòu)狞c(diǎn)
作
軸的垂線,交
于點(diǎn)
,設(shè)![]()
![]()
(1)求數(shù)列
的通項(xiàng)公式;
(2)記
,數(shù)列
的前
項(xiàng)和為
,試比較
與
的大小
;
(3)記
,數(shù)列
的前
項(xiàng)和為
,試證明:![]()
![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分12分)
已知數(shù)列
是遞增數(shù)列,且滿足
。
(1)若
是等差數(shù)列,求數(shù)列
的通項(xiàng)公式;
(2)對(duì)于(1)中
,令
,求數(shù)列
的前
項(xiàng)和
。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分12分)已知
是等比數(shù)列
的公比
且
是它的前
項(xiàng)的和。若
。(1)求數(shù)列
的通項(xiàng)公式;
(2)設(shè)
,求數(shù)列
的前
項(xiàng)和
。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分14分)
已知數(shù)列
的前
項(xiàng)和
,
,且
的最大值為8.
(1)確定
的值;
(2)求數(shù)列
的通項(xiàng)公式;
(3)求數(shù)列
的前
項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分13分)已知數(shù)列
的前
項(xiàng)和是
,且
.
(Ⅰ)求數(shù)列
的通項(xiàng)公式;
(Ⅱ)記
,求數(shù)列
的前
項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
定義在區(qū)間
上,
,且當(dāng)
時(shí),
恒有
.又?jǐn)?shù)列
滿足
.
(1)證明:
在
上是奇函數(shù);
(2)求
的表達(dá)式;
(3)設(shè)
為數(shù)列
的前
項(xiàng)和,若
對(duì)
恒成立,求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)已知數(shù)列{an}的前n項(xiàng)和
,
,且Sn的最大值為8.
(1)確定常數(shù)k的值,并求通項(xiàng)公式an;
(2)求數(shù)列
的前n項(xiàng)和Tn。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
已知a>b>0,給出下列四個(gè)不等式:①a2>b2;②2a>2b-1;③
>
-
;④a3+b3>2a2b.
其中一定成立的不等式為( )
| A.①②③ | B.①②④ |
| C.①③④ | D.②③④ |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com