(本小題滿分14分)已知函數(shù)
.
(1)求函數(shù)
的單調(diào)區(qū)間;
(2)若以函數(shù)
圖像上任意一點(diǎn)
為切點(diǎn)的切線的斜率
恒成立,求實(shí)數(shù)a的最小值;
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(1)若函數(shù)
的圖象在
處的切線方程為
,求
的值;
(2)若函數(shù)
在
上是增函數(shù),求
的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
。
(I)求
的單調(diào)區(qū)間;
(II)若對(duì)于所有的
成立,求實(shí)數(shù)
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分
分)
已知函數(shù)
.當(dāng)
時(shí),函數(shù)
取得極值.
(I)求實(shí)數(shù)
的值;
(II)若
時(shí),方程
有兩個(gè)根,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)
(13分)
(1)若![]()
上的最大值![]()
(2)若
在區(qū)間[1,2]上為減函數(shù),求a的取值范圍。
(3)若直線
為函數(shù)
的圖象的一條切線,求a的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)二次函數(shù)
的圖像過原
點(diǎn),
,
的導(dǎo)函數(shù)為
,且
,![]()
![]()
(1)求函數(shù)
,
的解析式;
(2)求
的極小值;
(3)是否存在實(shí)常數(shù)![]()
和
,使得
和
若存在,求
出
和
的值;若不存在,說明理由
。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)已知函數(shù)
.
(Ⅰ)求函數(shù)
的定義域;
(Ⅱ)求函數(shù)
的單調(diào)區(qū)間;
(Ⅲ)當(dāng)
時(shí),若存
在使得
成立,求
的取值范圍.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知函數(shù)
.(
).
(1)當(dāng)
時(shí),求函數(shù)
的極值;
(2)若對(duì)
,有
成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)![]()
(1)求函數(shù)
的極大值; (2)![]()
(3)對(duì)于函數(shù)
定義域上的任意實(shí)數(shù)
,若存在常數(shù)
,使得
都成立,則稱直線
為函數(shù)
的分界線。設(shè)
,試探究函數(shù)
是否存在“分界線”?若存在,請給予證明,并求出
的值;若不存在,請說明理由
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com