【題目】設函數
.
(1)若當
時,
取得極值,求
的值,并求
的單調區間.
(2)若
存在兩個極值點
,求
的取值范圍,并證明:
.
科目:高中數學 來源: 題型:
【題目】已知直線
過橢圓
的右焦點,且交橢圓于A,B兩點,線段AB的中點是
,
(1)求橢圓的方程;
(2)過原點的直線l與線段AB相交(不含端點)且交橢圓于C,D兩點,求四邊形
面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐E﹣ABCD的側棱DE與四棱錐F﹣ABCD的側棱BF都與底面ABCD垂直,AD⊥CD,AB∥CD,AB=3,AD=4,AE=5,
.
![]()
(1)證明:DF∥平面BCE.
(2)求A到平面BEDF的距離,并求四棱錐A﹣BEDF的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,矩形
中,
,
,
為
的中點,點
,
分別在線段
,
上運動(其中
不與
,
重合,
不與
,
重合),且
,沿
將
折起,得到三棱錐
,則三棱錐
體積的最大值為______;當三棱錐
體積最大時,其外接球的半徑
______.
![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】學校藝術節對
四件參賽作品只評一件一等獎,在評獎揭曉前,甲,乙,丙,丁四位同學對這四件參賽作品預測如下:
甲說:“是
或
作品獲得一等獎”; 乙說:“
作品獲得一等獎”;
丙說:“
兩件作品未獲得一等獎”; 丁說:“是
作品獲得一等獎”.
評獎揭曉后,發現這四位同學中只有兩位說的話是對的,則獲得一等獎的作品是_________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某家庭記錄了未使用節水龍頭50天的日用水量數據(單位:m3)和使用了節水龍頭50天的日用水量數據,得到頻數分布表如下:
未使用節水龍頭50天的日用水量頻數分布表
日用 水量 |
|
|
|
|
|
|
|
頻數 | 1 | 3 | 2 | 4 | 9 | 26 | 5 |
使用了節水龍頭50天的日用水量頻數分布表
日用 水量 |
|
|
|
|
|
|
頻數 | 1 | 5 | 13 | 10 | 16 | 5 |
(1)在答題卡上作出使用了節水龍頭50天的日用水量數據的頻率分布直方圖:
![]()
(2)估計該家庭使用節水龍頭后,日用水量小于0.35 m3的概率;
(3)估計該家庭使用節水龍頭后,一年能節省多少水?(一年按365天計算,同一組中的數據以這組數據所在區間中點的值作代表.)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=|x﹣2|+|x+1|.
(1)解關于x的不等式f(x)≤5;
(2)若函數f(x)的最小值記為m,設a,b,c均為正實數,且a+4b+9c=m,求
的最小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com